Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Junk DNA" Can Sense Viral Infection

25.04.2012
Promising tool in the battle between pathogen and host, TAU research confirms
Once considered unimportant "junk DNA," scientists have learned that non-coding RNA (ncRNA) — RNA molecules that do not translate into proteins — play a crucial role in cellular function. Mutations in ncRNA are associated with a number of conditions, such as cancer, autism, and Alzheimer's disease.

Now, through the use of "deep sequencing," a technology used to sequence the genetic materials of the human genome, Dr. Noam Shomron of Tel Aviv University's Sackler Faculty of Medicine has discovered that when infected with a virus, ncRNA gives off biological signals that indicate the presence of an infectious agent, known as a pathogen. Not only does this finding give researchers a more complete picture of the interactions between pathogens and the body, but it provides scientists with a new avenue for fighting off infections.

His findings have been published in the journal Nucleic Acid Research.

Another battleground between pathogen and host

"If we see that the number of particular RNA molecules increases during a specific viral infection, we can develop treatments to stop or slow their proliferation," explains Dr. Shomron.

In the lab, the researchers conducted a blind study in which some cells were infected with the HIV virus and others were left uninfected. Using the deep sequencer, which can read tens of millions of sequences per experiment, they analyzed the ncRNA to discover if the infection could be detected in non-coding DNA materials. The researchers were able to identify with 100% accuracy both infected and non-infected cells — all because the ncRNA was giving off significant signals, explains Dr. Shomron.

These signals, which can include either the increase or decrease of specific ncRNA molecules within a cell, most likely have biological significance, he says. "With the introduction of a pathogen, there is a reaction in both the coding and non-coding genes. By adding a new layer of information about pathogen and host interactions, we better understand the entire picture. And understanding the reactions of the ncRNA following infection by different viruses can open up the battle against all pathogens."

Finding an “Achilles heel” of infections

The researchers believe that if an ncRNA molecule significantly manifests itself during infection by a particular pathogen, the pathogen has co-opted this ncRNA to help the pathogen devastate the host — such as the human body. To help the body fight off the infection, drugs that stop or slow the molecules' proliferation could be a novel and effective strategy.

This new finding allows researchers to develop treatments that attack a virus from two different directions at once, targeting both the coding and non-coding genetic materials, says Dr. Shomron. He suggests that ncRNA could prove to be the "Achilles heel" of pathogens.

Dr. Shomron and his team of researchers developed new software, called RandA, which stands for "ncRNA Read-and-Analyze," that performs ncRNA profiling and analysis on data generated through deep sequencing technology. It's this software that has helped them to uncover the features that characterize virus-infected cells.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=16479

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>