"Green Genes" in Yeast May Boost Biofuel Production

This study, published in the December 2010 issue of GENETICS (http://www.genetics.org), shows how genetically altered yeast cells survive higher ethanol concentrations, addressing a bottleneck in the production of ethanol from cellulosic material (nonfood plant sources) in quantities that could make it economically competitive with fossil fuels.

“Our hope is that this research will take us closer to the goal of producing cheap, efficient, and environmentally friendly cellulosic ethanol,” said Audrey P. Gasch, Ph.D., a researcher involved in the work and an Assistant Professor of Genetics from the University of Wisconsin-Madison. “At the same time, we’ve learned a lot about how cells respond to alcohol stress. So the project has been very productive from multiple angles.”

To make this discovery, scientists turned to nature, studying how natural strains of the yeast Saccharomyces cerevisiae respond to ethanol treatment. They concluded that many wild strains of yeast respond to ethanol much differently than do traditional laboratory strains. When these wild yeast cells were treated with a low dose of ethanol, they mounted a response to become super-tolerant to high doses. By comparing and contrasting strains with different responses to ethanol, the researchers were able to quickly identify the specific genes responsible for the increased ethanol tolerance. They identified all genes in the yeast genome whose expression was affected when cells responded to ethanol. Comparing the responses of wild strains and a laboratory strain pointed the researchers to genes involved in high ethanol tolerance. The researchers were able to coax super ethanol tolerance in the laboratory strain by increasing expression of these genes.

“A lot of people think yeast is only useful to make beer, wine and bread,” said Mark Johnston, Editor-in-Chief of the journal GENETICS, “but it is also a key player in making ‘green,’ sustainable fuel sources part of the world’s economy. By genetically priming these organisms to produce more ethanol, Gasch and her team have taken an important step away from fossil fuels.”

DETAILS: Jeffrey A. Lewis, Isaac M. Elkon, Mick A. McGee, Alan J. Higbee, and Audrey P. Gasch, Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance.

Genetics, Vol. 186, 1197-1205, December 2010, Copyright © 2010
doi:10.1534/genetics.110.121871
Since 1916, GENETICS (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Media Contact

Tracey DePellegrin Connelly Newswise Science News

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors