Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Food mill" for proteins - new method improves protein analysis considerably

05.05.2009
Until now, extracting as many proteins as possible from biological samples has required a combination of several methods.

Scientists at the Max Planck Institute of Biochemistry have now developed a new universally employable sample preparation method that combines the advantages of the usual methods and allows an unprecedented depth of proteome coverage.

Proteins play an important role in the machinery of life, they determine cell structure and participate in all cell mechanisms. Thus protein analysis is crucial for elucidating cell processes. However, prior to their analysis by mass spectrometry, proteins must be extracted from the given sample and digested into smaller pieces (peptides).

So far, a combination of different methods was necessary in order to obtain as many proteins as possible - and even then some proteins remained poorly accessible: "For membrane proteins for example we have been searching for a suitable method for the last ten years", says Professor Jacek Wisniewski (Max Planck Institute of Biochemistry). Now the scientist and his colleagues in the research department "Proteomics and Signal Transduction" (led by Professor Matthias Mann) report a significant breakthrough: They have developed the first method to extract proteins from biological materials that can be used universally. The so-called FASP (filter aided sample preparation) is a new filtration technique that combines the advantages of the previous methods: robustness against impurities on the one hand and better automization possibilities on the other hand.

Using FASP, the proteins are first extracted by a strong detergent. Thereafter as the proteins are "glued" to the detergent they then need to be removed from the sample. This is achieved by the new filtration device - here the detergents are removed by urea, while the bulky proteins remain in the filter. "After this, the filter functions similarly to a food mill, such as where apples for example can be sieved", explains Wisniewski. Whilst still in the filter the proteins are "digested" by enzymes into smaller peptides, which can then pass through the filter, while impurities are retained. Pure peptides are eluted and - importantly - the protein yield is excellent, as Wisniewskis experiments prove. "The method is not only interesting from the point of view of membrane proteins, but now it is possible to examine all proteins, whatever their properties, using this one method only, also facilitating interpretation of results considerably", points out Wisniewski. Up to now, the scientists have already identified more than 7000 proteins from human tissue using this new method.

Original Publication:
J.R. Wisniewski, A. Zougman, N. Nagarjuna, M.Mann: Universal sample preparation method for proteome analysis. Nature Methods advanced online publication 19 April 2009.

doi: 10.1038/NMETH.1322

Contact:
Prof. Jacek Wisniewski
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
jwisniew@biochem.mpg.de
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-3882 // -2040
E-mail: goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/mann

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>