Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Disordered" Amino Acids May Really Be There to Provide Wiggle Room for Signaling Protein

28.05.2009
Fox Chase researchers first to determine structure in a class of self-regulating proteins

Sections of proteins previously thought to be disordered may in fact have an unexpected biological role — providing certain proteins room to move — according to a study published by researchers at Fox Chase Cancer Center in this month's issue of the journal Structure (Cell Press).

The researchers published the first comprehensive structural study of the protein NHERF1, which serves as a means of bringing together molecular signals between the outer membrane of a cell and the proteins found in the structures that form the cell's cytoskeleton. NHERF1 is representative of a large class of proteins with an array of biological roles, including signaling pathways implicated in diseases such as cystic fibrosis and breast cancer.

"Here we have a molecule that serves an important role in how cells function and survive, but it contains these puzzling 'junk' sequences that don't seem to have any apparent purpose," says the paper's lead author Heinrich Roder, PhD, a structural biologist and senior member of the Fox Chase Cancer Center faculty. "Our work suggests that this disorder is really a way of creating flexibility, allowing the protein to function as a molecular switch, a process that is thought to go wrong in certain diseases."

The NHERF1 proved particularly puzzling to researchers as it contains both known structures and large disordered regions. The structured sections of the protein are comprised of two so-called PDZ domains — components well known to scientists as anchors that can help the protein connect to other proteins and cellular structures — and an ezrin-binding motif, a sequence of amino acids that connects NHREF1 to cellular proteins such as ezrin. Together these structures allow NHERF1 to serve as a signaling adaptor, an important link between different proteins in a pathway. Oddly, researchers have noted that the ezrin-binding motif conveniently fits into a cleft on the surface of the PDZ domains, but assumes a helical structure, which is highly unusual for this class of proteins.

As is typical for human proteins, over one third of the amino acids that make up NHERF1 were predicted to be intrinsically disordered, forming no known structures and matching no known evolutionarily-conserved pattern. According to Roder, it is one of these disordered segments, approximately 100 amino acids long, which enable the protein to work. That is, it allows the PDZ binding module to "bite" its own ezrin-binding tail, effectively shutting the protein down. "The flexibility of the linker and its tendency to be more or less disordered are critical for regulating the balance between internal ("autoinhibitory") forces and external interactions with the protein's signaling partners," Roder says. This idea is reinforced by a recent observation by Zimei Bu, PhD, a Fox Chase researcher a coauthor of this study, who found that enzymatic modification (phosphorylation) of amino acids in the disordered region tips the balance towards the more open, active, form of the protein.

"Evolution has provided researchers with convenient modular structures, areas that are repeated over and over again to make up proteins, and so we tend to dismiss the interspersed disordered sequences that don't seem to have any definable structure," Roder says. "Here we show that the weak molecular interactions in a disorganized protein sequence are essential in giving this protein its unique attributes."

It was also this disorganized domain that made it difficult for researchers to create an accurate model of the entire protein, Roder says. Typically, researchers use a technique called x-ray crystallography, in which they can tell a protein's structure from how crystals made from the protein samples scatter x-rays. The disorganized section of NHREF1 makes it nearly impossible to create the necessary crystals to use this technique. Instead, Roder and colleagues used a technique called nuclear magnetic resonance spectroscopy, which can determine a protein's shape by measuring how the individual atomic nuclei of a protein interact with an intense magnetic field.

Since NMR spectroscopy works best with small proteins — not large flexible molecules like NHREF1 — Roder, his staff scientist Hong Cheng, PhD, and their colleagues came up with an innovative technique that allowed them to look at the protein from numerous angles with the NMR spectrometer, and subtract out the overlapping areas to form a more complete picture of the molecule. This picture enabled them to see what NHREF1 looks like in both its "on" and "off" conformation.

"When it is not working, the protein is in this 'off' conformation until acted upon by outside agents," Roder says. "It is a way for the cell to shut off a signaling pathway when it is not in use."

According to Roder, these findings may provide researchers a new way of looking at proteins like NHERF1 and their physiological role in cells.

Funding for this research comes from grants from the National Cancer Institute, National Institute of Health, American Cancer Society and an appropriation by the Commonwealth of Pennsylvania to the Fox Chase Cancer Center.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>