Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Dip Chip" Technology Tests Toxicity On-the-Go

15.05.2012
Biosensor warns of toxicity in real time, says TAU researcher
From man-made toxic chemicals such as industrial by-products to poisons that occur naturally, a water or food supply can be easily contaminated. And for every level of toxic material ingested, there is some level of bodily response, ranging from minor illness to painful certain death.

Biosensors have long been used to safeguard against exposure to toxic chemicals. Food tasters employed by the ancients acted as early versions of biosensors, determining if a meal had been poisoned. More modern examples include the use of fish, which may alter their swimming characteristics if a toxic material is introduced into to the water. But although current warning systems are more sophisticated, they require equipment and time that a soldier in the field or an adventurer in the wilderness do not have.

Now Prof. Yosi Shacham-Diamand, Vice Dean of Tel Aviv University's Faculty of Engineering, along with Prof. Shimshon Belkin of the Institute of Life Sciences at the Hebrew University of Jerusalem, has married biology and engineering to produce a biosensor device called the "Dip Chip," which detects toxicity quickly and accurately, generating low false positive and false negative readings. The Dip Chip contains microbes designed to exhibit a biological reaction to toxic chemicals, emulating the biological responses of humans or animals.

Converting biological response to electricity

The biological reaction is converted into an electronic signal that can be read by the user. When perfected for commercial applications, the chip might be easily plugged into a mobile device to determine toxicity, says Prof. Shacham-Diamand.

The new chips are based on genetically modified microbes developed in Prof. Belkin's lab. When the modified microbes are exposed to toxic or poisonous materials, they produce a measurable biochemical reaction — and this is where Prof. Shacham-Diamand's work begins.

"In my lab, we developed a method for communicating with the microbes, converting this biological response to electrical signals," he explains. The device, which looks like a dip stick, immobilizes these specially-produced microbes next to the sensing electrodes. Once the microbes come into contact with a questionable substance they produce a chemical signal that is converted to an electrical current by an device that can interpret the signals, producing a binary "toxic" or "not toxic" diagnosis.

In the future, Prof. Shacham-Diamand hopes that smaller versions of the Dip Chips might be plugged into existing mobile electronic devices, such as cell phones or tablets, to give the user a toxicity reading. This would make it an economically feasible and easy-to-use technology for people such as campers or for military purposes.

Reading any toxic material

One of the chip's advantages is its ability to identify toxicity as a biological quality instead of specific toxic chemicals. There are already excellent detectors to identify specific toxic materials, says Prof. Shacham-Diamand. The Dip Chip, however, is designed to alert the user to overall toxicity. And because the chip measures general toxicity, it will pick up on any and all toxic materials — even those that have not been discovered or invented yet.

Beyond their ability to find toxic chemicals in the field, these chips can also be put to use in the cosmetics or pharmaceuticals industries, says Prof. Shacham-Diamand. They could be used to detect the toxicity of new compounds, minimizing the controversial use of lab animals. Using the same technology, the researchers have also developed a larger-scale device which allows water to flow continuously over the sensor, making it appropriate for online, real-time monitoring of water supplies.

The results of their research have been published in a number of journals, including Electrochimica Acta and Sensors and Actuators B: Chemical.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>