Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "Control Knobs" for Stem Cells Identified

04.12.2008
Natural changes in voltage that occur across the membrane of adult human stem cells are a powerful controlling factor in the process by which these stem cells differentiate, according to research published by Tufts University scientists.

Tufts doctoral student Sarah Sundelacruz, Professor of Biology Michael Levin, and Chair of Biomedical Engineering David L. Kaplan (corresponding author) published their paper "Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells" in the November 17, 2008, issue of PLoS ONE (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003737).

"We have found that voltage changes act as a signal to delay or accelerate the decision of a stem cell to drop out of a stem state and differentiate into a specific cell type. This discovery gives scientists in regenerative medicine a new set of control knobs to use in ongoing efforts to shape the behavior of adult stem cells," said Levin. "In addition, by uncovering a new mechanism by which these cells are controlled in the human body, this research suggests potential future diagnostic applications."

Harnessing the potential of stem cells for applications such as wound healing and tissue regeneration is a tantalizing yet daunting task. Although many studies indicate that electrophysiology plays a crucial role in cell proliferation and differentiation, its functional role in stem cell biology is poorly understood.

The Tufts researchers studied the changes in membrane potential (voltage across the membrane) shown by human mesenchymal stem cells (hMSCs) obtained from donor bone marrow as the hMSCs were differentiating into fat and bone cells. They found that hyperpolarization (increased difference between the voltage in the interior and exterior of a cell) was characteristic of differentiated cells compared with undifferentiated cells and that hMSCs show different membrane potential profiles during bone vs. fat differentiation.

To determine whether hyperpolarization was functionally required for differentiation, the scientists depolarized the hMSCs by exposing them either to high levels of extracellular potassium ions or to ouabain, a compound that blocks the transfer of ions in and out of cells. Both treatments disrupted the normal increase in negative voltage that occurs during differentiation and suppressed fat and bone cell differentiation markers.

In contrast, treatment with hyperpolarizing reagents up-regulated bone cell markers – indicating that voltage changes are not merely permissive for differentiation but can act as an instructive signal to either induce or inhibit differentiation.

More study is needed to determine whether hyperpolarization also determines which specific type of cell stem cells will differentiate into, according to the Tufts researchers.

Funding for the study came from the National Science Foundation through the Graduate Research Fellowship Program, the National Institutes of Health through the Tissue Engineering Resource Center, the National Highway Traffic Safety Administration and the U.S. Defense Advanced Research Projects Agency.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | Newswise Science News
Further information:
http://www.tufts.edu
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003737

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>