Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quickly evolving bacteria could improve digestive health

19.05.2010
When the forces of evolution took over an experimental strain of bacteria, it derailed an experiment Duke and NC State researchers thought they were conducting, but led to something much more profound instead.

The researchers used a colony of mice raised in a large plastic bubble, called an isolator, that was completely sterile, lacking even a single bacterium. They introduced a single type of bacteria into the mouse colony, but it mutated quickly into different types, making new bacteria that were hardier inside of the mice than the original bacterium was.

"In some regards, this is one of the best demonstrations of evolution ever carried out in a laboratory," said William Parker, Ph.D., assistant professor in the Duke Department of Surgery. "This is the first time the evolution of bacteria has been monitored for a period of years in an incredibly complex environment."

Parker said the work illustrates the power of evolution in creating diversity and in filling ecological niches. "This study also strengthens the idea that we could harness evolution in the laboratory to develop microbes for use in biotechnology and in medicine," Parker said.

The results, which appear in the journal Applied and Environmental Microbiology, indicate that "experimental evolution," or evolution controlled in a laboratory setting, could be used to develop new strains of bacteria for use as probiotic substances, which are living organisms used for intestinal and digestive therapies.

The scientists put a single strain of bacteria, brushed onto the mice, in a colony of otherwise bacteria-free mice. The study bacteria were engineered to make a structure (called a type 1 pilus) that helps them stick to things. The researchers hoped to learn how the molecule would affect the interaction between the bacteria and the mice.

"We were surprised, because we thought we would be able to study this engineered bacterium for a while, but we were wrong," Parker said. The bacteria started to mutate and quickly lost the pilus structure that had been engineered into them. The single homogeneous strain was rapidly evolving into a diverse community of organisms.

"We did a variety of experiments to rule out contamination as the source of the diversity," Parker said. "It became clear that evolution was messing up our experiment. At that point, because the evolutionary process seemed to be driving the bacteria to live more effectively in the mouse gut, and because developing bacteria to live more effectively in the gut is one of our primary goals, we decided to let the process run and see where it would go."

Over the three-year study period, the bacterial population remained diverse and appeared to adapt significantly well to the environment in the digestive tracts of the mice. "The bacteria colonized better in the mice by the end of the experiment than at the beginning," Parker said, with more than a three-fold increase in the density of bacteria within the gut by the end of the experiment.

"We see a number of evolutionary adaptations occurring in the bacteria, including a potential increase in resistance to cell death," Parker said. One future goal of the research is to understand the genetic changes responsible for the adaptations.

A large team composed of scientists from Duke and from North Carolina State University was involved in the study, which took place over the course of about seven years, including preparation prior to the three years in the isolator and the analyses of the bacteria afterwards. The team included Sean M. Lee, Aaron Wyse, Aaron Lesher, Mary Lou Everett, Linda Lou, Zoie E. Holzknecht, John F. Whitesides, Dawn E. Bowles, Shu S. Lin, and R. Randal Bollinger from Duke, and Susan L. Tonkonogy, Paul E. Orndorff, Patricia A. Spears, and Donna Kronstadt from North Carolina State.

The work was funded by the National Institutes of Health through the Center for Gastrointestinal Biology and Disease and the Duke Human Vaccine Institute Flow Cytometry Core Facility.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>