Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quickly evolving bacteria could improve digestive health

19.05.2010
When the forces of evolution took over an experimental strain of bacteria, it derailed an experiment Duke and NC State researchers thought they were conducting, but led to something much more profound instead.

The researchers used a colony of mice raised in a large plastic bubble, called an isolator, that was completely sterile, lacking even a single bacterium. They introduced a single type of bacteria into the mouse colony, but it mutated quickly into different types, making new bacteria that were hardier inside of the mice than the original bacterium was.

"In some regards, this is one of the best demonstrations of evolution ever carried out in a laboratory," said William Parker, Ph.D., assistant professor in the Duke Department of Surgery. "This is the first time the evolution of bacteria has been monitored for a period of years in an incredibly complex environment."

Parker said the work illustrates the power of evolution in creating diversity and in filling ecological niches. "This study also strengthens the idea that we could harness evolution in the laboratory to develop microbes for use in biotechnology and in medicine," Parker said.

The results, which appear in the journal Applied and Environmental Microbiology, indicate that "experimental evolution," or evolution controlled in a laboratory setting, could be used to develop new strains of bacteria for use as probiotic substances, which are living organisms used for intestinal and digestive therapies.

The scientists put a single strain of bacteria, brushed onto the mice, in a colony of otherwise bacteria-free mice. The study bacteria were engineered to make a structure (called a type 1 pilus) that helps them stick to things. The researchers hoped to learn how the molecule would affect the interaction between the bacteria and the mice.

"We were surprised, because we thought we would be able to study this engineered bacterium for a while, but we were wrong," Parker said. The bacteria started to mutate and quickly lost the pilus structure that had been engineered into them. The single homogeneous strain was rapidly evolving into a diverse community of organisms.

"We did a variety of experiments to rule out contamination as the source of the diversity," Parker said. "It became clear that evolution was messing up our experiment. At that point, because the evolutionary process seemed to be driving the bacteria to live more effectively in the mouse gut, and because developing bacteria to live more effectively in the gut is one of our primary goals, we decided to let the process run and see where it would go."

Over the three-year study period, the bacterial population remained diverse and appeared to adapt significantly well to the environment in the digestive tracts of the mice. "The bacteria colonized better in the mice by the end of the experiment than at the beginning," Parker said, with more than a three-fold increase in the density of bacteria within the gut by the end of the experiment.

"We see a number of evolutionary adaptations occurring in the bacteria, including a potential increase in resistance to cell death," Parker said. One future goal of the research is to understand the genetic changes responsible for the adaptations.

A large team composed of scientists from Duke and from North Carolina State University was involved in the study, which took place over the course of about seven years, including preparation prior to the three years in the isolator and the analyses of the bacteria afterwards. The team included Sean M. Lee, Aaron Wyse, Aaron Lesher, Mary Lou Everett, Linda Lou, Zoie E. Holzknecht, John F. Whitesides, Dawn E. Bowles, Shu S. Lin, and R. Randal Bollinger from Duke, and Susan L. Tonkonogy, Paul E. Orndorff, Patricia A. Spears, and Donna Kronstadt from North Carolina State.

The work was funded by the National Institutes of Health through the Center for Gastrointestinal Biology and Disease and the Duke Human Vaccine Institute Flow Cytometry Core Facility.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>