Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quickly evolving bacteria could improve digestive health

19.05.2010
When the forces of evolution took over an experimental strain of bacteria, it derailed an experiment Duke and NC State researchers thought they were conducting, but led to something much more profound instead.

The researchers used a colony of mice raised in a large plastic bubble, called an isolator, that was completely sterile, lacking even a single bacterium. They introduced a single type of bacteria into the mouse colony, but it mutated quickly into different types, making new bacteria that were hardier inside of the mice than the original bacterium was.

"In some regards, this is one of the best demonstrations of evolution ever carried out in a laboratory," said William Parker, Ph.D., assistant professor in the Duke Department of Surgery. "This is the first time the evolution of bacteria has been monitored for a period of years in an incredibly complex environment."

Parker said the work illustrates the power of evolution in creating diversity and in filling ecological niches. "This study also strengthens the idea that we could harness evolution in the laboratory to develop microbes for use in biotechnology and in medicine," Parker said.

The results, which appear in the journal Applied and Environmental Microbiology, indicate that "experimental evolution," or evolution controlled in a laboratory setting, could be used to develop new strains of bacteria for use as probiotic substances, which are living organisms used for intestinal and digestive therapies.

The scientists put a single strain of bacteria, brushed onto the mice, in a colony of otherwise bacteria-free mice. The study bacteria were engineered to make a structure (called a type 1 pilus) that helps them stick to things. The researchers hoped to learn how the molecule would affect the interaction between the bacteria and the mice.

"We were surprised, because we thought we would be able to study this engineered bacterium for a while, but we were wrong," Parker said. The bacteria started to mutate and quickly lost the pilus structure that had been engineered into them. The single homogeneous strain was rapidly evolving into a diverse community of organisms.

"We did a variety of experiments to rule out contamination as the source of the diversity," Parker said. "It became clear that evolution was messing up our experiment. At that point, because the evolutionary process seemed to be driving the bacteria to live more effectively in the mouse gut, and because developing bacteria to live more effectively in the gut is one of our primary goals, we decided to let the process run and see where it would go."

Over the three-year study period, the bacterial population remained diverse and appeared to adapt significantly well to the environment in the digestive tracts of the mice. "The bacteria colonized better in the mice by the end of the experiment than at the beginning," Parker said, with more than a three-fold increase in the density of bacteria within the gut by the end of the experiment.

"We see a number of evolutionary adaptations occurring in the bacteria, including a potential increase in resistance to cell death," Parker said. One future goal of the research is to understand the genetic changes responsible for the adaptations.

A large team composed of scientists from Duke and from North Carolina State University was involved in the study, which took place over the course of about seven years, including preparation prior to the three years in the isolator and the analyses of the bacteria afterwards. The team included Sean M. Lee, Aaron Wyse, Aaron Lesher, Mary Lou Everett, Linda Lou, Zoie E. Holzknecht, John F. Whitesides, Dawn E. Bowles, Shu S. Lin, and R. Randal Bollinger from Duke, and Susan L. Tonkonogy, Paul E. Orndorff, Patricia A. Spears, and Donna Kronstadt from North Carolina State.

The work was funded by the National Institutes of Health through the Center for Gastrointestinal Biology and Disease and the Duke Human Vaccine Institute Flow Cytometry Core Facility.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>