Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick Getaway: How Flies Escape Looming Predators

10.06.2014

When a fruit fly detects an approaching predator, the fly can launch itself into the air and soar gracefully to safety in a fraction of a second. But there's not always time for that.

Some threats demand a quicker getaway. New research from scientists at Howard Hughes Medical Institute's Janelia Research Campus reveals how a quick-escape circuit in the fly's brain overrides the fly's slower, more controlled behavior when a threat becomes urgent.


Photo by Igor Siwanowicz, HHMI/Janelia.

Scientists at HHMI's Janelia Research Campus discover how a quick-escape circuit in the fly's brain overrides the fly's slower, more controlled behavior when a threat becomes urgent.

“The fly's rapid takeoff is, on average, eight milliseconds faster than its more controlled takeoff,” says Janelia group leader Gwyneth Card. “Eight milliseconds could be the difference between life and death.”

Card studies escape behaviors in the fruit fly to unravel the circuits and processes that underlie decision making, teasing out how the brain integrates information to respond to a changing environment. Her team's new study, published online June 8, 2014, in the journal Nature Neuroscience, shows that two neural circuits mediate fruit flies' slow-and-stable or quick-but-clumsy escape behaviors. Card, postdoctoral researcher Catherine von Reyn, and their colleagues find that a spike of activity in a key neuron in the quick-escape circuit can override the slower escape, prompting the fly to spring to safety when a threat gets too near.

... more about:
»Looming »behavior »circuit »escape »fiber »flies »fly »neurons »stimulus

A pair of neurons -- called giant fibers -- in the fruit fly brain has long been suspected to trigger escape. Researchers can provoke this behavior by artificially activating the giant fiber neurons, but no one had actually demonstrated that those neurons responded to visual cues associated with an approaching predator, Card says. She was curious how the neurons could be involved in the natural behavior if they didn't seem to respond to the relevant sensory cues, so she decided to test their role.

Genetic tools developed in the lab of Janelia executive director Gerald Rubin enabled Card's team to switch the giant fiber neurons on or off, and then observe how flies responded to a predator-like stimulus. They conducted their experiments in an apparatus developed in Card's lab that captures videos of individual flies as they are exposed to a looming dark circle. The image is projected onto a hemispheric surface and expands rapidly to fill the fly's visual field, simulating the approach of a predator. “It's really like a domed IMAX for the fly,” Card explains. A high-speed camera records the response at 6,000 frames per second, allowing Card and her colleagues to examine in detail the series of events that make up the fly's escape.

To ensure their experiments were relevant to fruit flies' real-world experiences, Card teamed with fellow Janelia group leader Anthony Leonardo to record and analyze the trajectories and acceleration of damselflies – natural predators of the fruit fly – as they attacked. They designed their looming stimulus to mimic these features. “We wanted to make sure we were really challenging the animal with something that was like a predator attack,” Card says.

By analyzing more than 4,000 flies, Card and her colleagues discovered two distinct responses to the simulated predator: long and short escapes. To prepare for a steady take-off, flies took the time to raise their wings fully. Quicker escapes, in contrast, eliminated this step, shaving time off the take-off but often causing the fly to tumble through the air.

When the scientists switched off the giant fiber neurons, preventing them from firing, flies still managed to complete their escape sequence. “On a surface level evaluation, silencing the neuron had absolutely no effect,” Card says. “You can do away with this neuron that people thought was fundamental to this escape behavior, and flies still escape.” Shorter escapes, however, were completely eliminated. Flies without active giant fiber neurons invariably opted for the slower, steadier escape. In contrast, when the scientists switched giant fiber neurons on in the absence of a predator-like stimulus, flies enacted their quick-escape behavior. The evidence suggested the giant fiber neurons were involved only in short escapes, while a separate circuit mediated the long escapes.

Card and her colleagues wanted to understand how flies decide when to sacrifice stability in favor of a quicker response. To learn more, Catherine von Reyn, a postdoctoral researcher in Card's lab, set up experiments in which she could directly monitor activity in the giant fiber neurons. Surprisingly, she discovered that the giant fibers were not only active in short-mode escape, but also during some of the long-mode escapes. The situation was more complicated than their genetic experiments had suggested. “Seeing the dynamics of the electrophysiology allowed us to understand that the timing of the spike is important is determining the fly's choice of escape behavior,” Card says.

Based on their data, Card and von Reyn propose that a looming stimulus first activates a circuit in the brain that initiates a slow escape, beginning with a controlled lift of the wings. When the object looms closer, filling more of the fly's field of view, the giant fiber activates, prompting a more urgent escape. “What determines whether a fly does a long-mode or a short-mode escape is how soon after the wings go up the fly kicks its legs and it starts to take off,” Card says. “The giant fiber can fire at any point during that sequence. It might not fire at all – in which case you get this nice long, beautifully choreographed takeoff. It might fire right away, in which case you get an abbreviated escape.” The more quickly an object approaches, the sooner the giant fiber is likely to fire, increasing the probability of a short escape.

Card remains curious about many aspects of escape behavior. How does a fly calculate the orientation of a threat and decide in which direction to flee, she wonders. What makes a fly decide to initiate a takeoff as opposed to other evasive maneuvers? The relatively compact circuits that control these sensory-driven behaviors provide a powerful system for exploring the mechanisms that animals use to selecting one behavior over another, she says. “We think that you can really ask these questions at the level of individual neurons, and even individual spikes in those neurons.”

Jim Keeley | newswise
Further information:
http://www.hhmi.org

Further reports about: Looming behavior circuit escape fiber flies fly neurons stimulus

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>