Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick Getaway: How Flies Escape Looming Predators

10.06.2014

When a fruit fly detects an approaching predator, the fly can launch itself into the air and soar gracefully to safety in a fraction of a second. But there's not always time for that.

Some threats demand a quicker getaway. New research from scientists at Howard Hughes Medical Institute's Janelia Research Campus reveals how a quick-escape circuit in the fly's brain overrides the fly's slower, more controlled behavior when a threat becomes urgent.


Photo by Igor Siwanowicz, HHMI/Janelia.

Scientists at HHMI's Janelia Research Campus discover how a quick-escape circuit in the fly's brain overrides the fly's slower, more controlled behavior when a threat becomes urgent.

“The fly's rapid takeoff is, on average, eight milliseconds faster than its more controlled takeoff,” says Janelia group leader Gwyneth Card. “Eight milliseconds could be the difference between life and death.”

Card studies escape behaviors in the fruit fly to unravel the circuits and processes that underlie decision making, teasing out how the brain integrates information to respond to a changing environment. Her team's new study, published online June 8, 2014, in the journal Nature Neuroscience, shows that two neural circuits mediate fruit flies' slow-and-stable or quick-but-clumsy escape behaviors. Card, postdoctoral researcher Catherine von Reyn, and their colleagues find that a spike of activity in a key neuron in the quick-escape circuit can override the slower escape, prompting the fly to spring to safety when a threat gets too near.

... more about:
»Looming »behavior »circuit »escape »fiber »flies »fly »neurons »stimulus

A pair of neurons -- called giant fibers -- in the fruit fly brain has long been suspected to trigger escape. Researchers can provoke this behavior by artificially activating the giant fiber neurons, but no one had actually demonstrated that those neurons responded to visual cues associated with an approaching predator, Card says. She was curious how the neurons could be involved in the natural behavior if they didn't seem to respond to the relevant sensory cues, so she decided to test their role.

Genetic tools developed in the lab of Janelia executive director Gerald Rubin enabled Card's team to switch the giant fiber neurons on or off, and then observe how flies responded to a predator-like stimulus. They conducted their experiments in an apparatus developed in Card's lab that captures videos of individual flies as they are exposed to a looming dark circle. The image is projected onto a hemispheric surface and expands rapidly to fill the fly's visual field, simulating the approach of a predator. “It's really like a domed IMAX for the fly,” Card explains. A high-speed camera records the response at 6,000 frames per second, allowing Card and her colleagues to examine in detail the series of events that make up the fly's escape.

To ensure their experiments were relevant to fruit flies' real-world experiences, Card teamed with fellow Janelia group leader Anthony Leonardo to record and analyze the trajectories and acceleration of damselflies – natural predators of the fruit fly – as they attacked. They designed their looming stimulus to mimic these features. “We wanted to make sure we were really challenging the animal with something that was like a predator attack,” Card says.

By analyzing more than 4,000 flies, Card and her colleagues discovered two distinct responses to the simulated predator: long and short escapes. To prepare for a steady take-off, flies took the time to raise their wings fully. Quicker escapes, in contrast, eliminated this step, shaving time off the take-off but often causing the fly to tumble through the air.

When the scientists switched off the giant fiber neurons, preventing them from firing, flies still managed to complete their escape sequence. “On a surface level evaluation, silencing the neuron had absolutely no effect,” Card says. “You can do away with this neuron that people thought was fundamental to this escape behavior, and flies still escape.” Shorter escapes, however, were completely eliminated. Flies without active giant fiber neurons invariably opted for the slower, steadier escape. In contrast, when the scientists switched giant fiber neurons on in the absence of a predator-like stimulus, flies enacted their quick-escape behavior. The evidence suggested the giant fiber neurons were involved only in short escapes, while a separate circuit mediated the long escapes.

Card and her colleagues wanted to understand how flies decide when to sacrifice stability in favor of a quicker response. To learn more, Catherine von Reyn, a postdoctoral researcher in Card's lab, set up experiments in which she could directly monitor activity in the giant fiber neurons. Surprisingly, she discovered that the giant fibers were not only active in short-mode escape, but also during some of the long-mode escapes. The situation was more complicated than their genetic experiments had suggested. “Seeing the dynamics of the electrophysiology allowed us to understand that the timing of the spike is important is determining the fly's choice of escape behavior,” Card says.

Based on their data, Card and von Reyn propose that a looming stimulus first activates a circuit in the brain that initiates a slow escape, beginning with a controlled lift of the wings. When the object looms closer, filling more of the fly's field of view, the giant fiber activates, prompting a more urgent escape. “What determines whether a fly does a long-mode or a short-mode escape is how soon after the wings go up the fly kicks its legs and it starts to take off,” Card says. “The giant fiber can fire at any point during that sequence. It might not fire at all – in which case you get this nice long, beautifully choreographed takeoff. It might fire right away, in which case you get an abbreviated escape.” The more quickly an object approaches, the sooner the giant fiber is likely to fire, increasing the probability of a short escape.

Card remains curious about many aspects of escape behavior. How does a fly calculate the orientation of a threat and decide in which direction to flee, she wonders. What makes a fly decide to initiate a takeoff as opposed to other evasive maneuvers? The relatively compact circuits that control these sensory-driven behaviors provide a powerful system for exploring the mechanisms that animals use to selecting one behavior over another, she says. “We think that you can really ask these questions at the level of individual neurons, and even individual spikes in those neurons.”

Jim Keeley | newswise
Further information:
http://www.hhmi.org

Further reports about: Looming behavior circuit escape fiber flies fly neurons stimulus

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Imaging test may identify biomarker of Alzheimer's disease

27.05.2015 | Health and Medicine

Experiments in the realm of the impossible

27.05.2015 | Physics and Astronomy

Over 70% of glacier volume in Everest region could be lost by 2100

27.05.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>