Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick and easy: new ELISA for plant virus detection yields results after two hours

23.06.2016

Scientists at the Leibniz Institute DSMZ have developed an extremely timesaving immunoassay variant. Using the classic ELISA, results are obtained only after up to two days. However, the new ‘B-Fast ELISA’ yields reliable results already after about two hours. Nevertheless, the B-Fast ELISA equals the classic methods with regard to sensitivity, specificity and the possibility of semi-quantitative analysis. At the moment, the DSMZ offers the B-Fast ELISA for the detection of ten different plant viruses, for example the Tomato spotted wilt virus or the Maize chlorotic mottle virus, which belong to the economically most important viruses worldwide.

The plant virologists Dr. Wulf Menzel and Dr. Stephan Winter from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures have developed a simplified, much faster variant of the enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses, thereby cooperating with the Australian biotechnology company TGR BioSciences.

Using the classic ELISA, results are obtained only after up to two days. However, the new ‘B-Fast ELISA’ yields reliable results already after about two hours.

“Our rapid test comprises much fewer steps and much shorter incubation times than the classic ELISA variants used up to now, so that the amount of work is considerably reduced,” Wulf Menzel explains. “Nevertheless, the B-Fast ELISA equals the classic methods with regard to sensitivity, specificity and the possibility of semi-quantitative analysis”.

The available kit contains 12 separate 8-well strips, so that low sample numbers can be tested without having to use an entire plate. “Thus, this ‘Friday afternoon ELISA’ is very convenient if the results are needed within a short time or if low sample numbers have to be tested frequently,” Wulf Menzel says.

The ELISA is the commonly used method for the routine detection of plant viruses. The new B-Fast ELISA variant, which is now available in plant pathogen diagnostics for the first time, is based on a technology developed by TGR BioSciences (CaptSure™ technology).

Its special feature is the coupling of the primary antibody with a peptide which can bind to another antibody immobilized on the ELISA plate. Thus, the incubation of primary and secondary antibody together with the sample can occur at the same time on the plate, and the entire complex is immobilized. After a washing step, detection by an enzymatic color reaction takes place.

At the moment, the DSMZ offers the B-Fast ELISA for the detection of ten different plant viruses, for example the Tomato spotted wilt virus or the Maize chlorotic mottle virus, which belong to the economically most important viruses worldwide. Moreover, the scientists are working on the expansion of the method in cooperation with TGR BioSciences, so that more viruses can be detected in the future.

Scientific contact
Dr. Wulf Menzel
Department plant viruses
Phone: 0531 2616-402
E-Mail: plantvirus@dsmz.de

About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there. http://www.dsmz.de

Christian Engel | idw - Informationsdienst Wissenschaft

Further reports about: BioSciences Cell DSMZ biological materials cell cultures plant virus viruses

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>