Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quest for specific anti-inflammatory treatment

08.01.2009
Anti-inflammatory drugs affect the cells taking part in inflammatory processes, but also those that do not. This is why it is important to develop specific anti-inflammatory drugs which affect healthy cells. With this aim in mind, a team from the University of the Basque Country is working on analogues of the C1P molecule.

Today two types of anti-inflammatory pharmaceutical drugs are available: steroids and those known as NSAID (Non-steroidal anti-inflammatory drugs). This second type are the most used, have fewer side-effects but they have an effect over a wider spectrum, i.e. they are less specific. Thus, there are no specific anti-inflammatory drugs for each cell type.

The team led by Antonio Gómez-Muñoz, from the Department of Biochemistry and Molecular Biology at the Science and Technology Faculty of the University of the Basque Country (UPV/EHU), is investigating alternatives to current anti-inflammatory drugs, creating synthetic analogues of the C1P (ceramide-1-phosphate) molecule. This molecule was discovered in 1990 in a case of human leukaemia After synthesising it in the laboratory, it was observed that it was an important mytogenic agent (provoking cell growth and blocking the natural death of the cells). Moreover, it causes cell inflammation, i.e. when the cells detect the presence of this molecule, they secrete molecules that generate inflammation - prostaglandin and cytokine cells, for example.

But this process does not occur with all types of cells. Although apparently contradictory, in some cells this same molecule functions in an anti-inflammatory manner. With this in mind, the Basque research team, annulling the inflammatory capacity of the C1P molecule, was able to use it as an anti-inflammatory drug for certain cell types without affecting other cells.

Removing one of the capabilities

To this end, and in collaboration with a research team from the University of Barcelona, they developed synthetic molecules similar in structure to that of C1P. The team is being led by doctors Josefina Casas and Gemma Fabriás, from the Consejo Superior para la Investigación Científica (CSIC) and includes Doctor Antonio Delgado from the University of Barcelona. They are the pharmacists and organic chemists who provide the UPV/EHU team with the made-to-measure molecules.

50 analogues of C1P have been tested to date of which three have provided the desired results, i.e. an anti-inflammatory function without causing inflammation in other cells These analogues do not generate prostaglandin, as does C1P and, thereby, do not produce any inflammation.

The three analogues mentioned have been tested with smooth muscle cells, with macrophages and with cancerous lung cells. The best results were obtained with the second and third type of cell. These types have been chosen as having a strong response to pro-inflammatory molecules.

Inflammation and cancer

Inflammatory processes may have various causes, an infection, for example. Chronic inflammatory diseases also exist, such as ulcerous colitis or multiple sclerosis, where, due to a constant state of inflammation, the cells are destabilised, provoking neoplasic processes, i.e. they generate new tissue of a tumorous nature. And this constant inflammation has great influence on the cells. They are destabilised and may cause an uncontrolled growth of the cells, even blocking their programmed death.

There are very few teams today researching the anti-inflammatory abilities of the C1P molecule – one team in Virginia (USA), the pharmaceutical company Novartis (Austria) and specific research teams such as that of Antonio Gómez-Muñoz, the first to investigate them in 1995. At present, the research is being undertaken at the cell level and shortly they should begin investigating with tissues and organs.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2012&hizk=I

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>