Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quest for specific anti-inflammatory treatment

08.01.2009
Anti-inflammatory drugs affect the cells taking part in inflammatory processes, but also those that do not. This is why it is important to develop specific anti-inflammatory drugs which affect healthy cells. With this aim in mind, a team from the University of the Basque Country is working on analogues of the C1P molecule.

Today two types of anti-inflammatory pharmaceutical drugs are available: steroids and those known as NSAID (Non-steroidal anti-inflammatory drugs). This second type are the most used, have fewer side-effects but they have an effect over a wider spectrum, i.e. they are less specific. Thus, there are no specific anti-inflammatory drugs for each cell type.

The team led by Antonio Gómez-Muñoz, from the Department of Biochemistry and Molecular Biology at the Science and Technology Faculty of the University of the Basque Country (UPV/EHU), is investigating alternatives to current anti-inflammatory drugs, creating synthetic analogues of the C1P (ceramide-1-phosphate) molecule. This molecule was discovered in 1990 in a case of human leukaemia After synthesising it in the laboratory, it was observed that it was an important mytogenic agent (provoking cell growth and blocking the natural death of the cells). Moreover, it causes cell inflammation, i.e. when the cells detect the presence of this molecule, they secrete molecules that generate inflammation - prostaglandin and cytokine cells, for example.

But this process does not occur with all types of cells. Although apparently contradictory, in some cells this same molecule functions in an anti-inflammatory manner. With this in mind, the Basque research team, annulling the inflammatory capacity of the C1P molecule, was able to use it as an anti-inflammatory drug for certain cell types without affecting other cells.

Removing one of the capabilities

To this end, and in collaboration with a research team from the University of Barcelona, they developed synthetic molecules similar in structure to that of C1P. The team is being led by doctors Josefina Casas and Gemma Fabriás, from the Consejo Superior para la Investigación Científica (CSIC) and includes Doctor Antonio Delgado from the University of Barcelona. They are the pharmacists and organic chemists who provide the UPV/EHU team with the made-to-measure molecules.

50 analogues of C1P have been tested to date of which three have provided the desired results, i.e. an anti-inflammatory function without causing inflammation in other cells These analogues do not generate prostaglandin, as does C1P and, thereby, do not produce any inflammation.

The three analogues mentioned have been tested with smooth muscle cells, with macrophages and with cancerous lung cells. The best results were obtained with the second and third type of cell. These types have been chosen as having a strong response to pro-inflammatory molecules.

Inflammation and cancer

Inflammatory processes may have various causes, an infection, for example. Chronic inflammatory diseases also exist, such as ulcerous colitis or multiple sclerosis, where, due to a constant state of inflammation, the cells are destabilised, provoking neoplasic processes, i.e. they generate new tissue of a tumorous nature. And this constant inflammation has great influence on the cells. They are destabilised and may cause an uncontrolled growth of the cells, even blocking their programmed death.

There are very few teams today researching the anti-inflammatory abilities of the C1P molecule – one team in Virginia (USA), the pharmaceutical company Novartis (Austria) and specific research teams such as that of Antonio Gómez-Muñoz, the first to investigate them in 1995. At present, the research is being undertaken at the cell level and shortly they should begin investigating with tissues and organs.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2012&hizk=I

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>