Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quest for specific anti-inflammatory treatment

08.01.2009
Anti-inflammatory drugs affect the cells taking part in inflammatory processes, but also those that do not. This is why it is important to develop specific anti-inflammatory drugs which affect healthy cells. With this aim in mind, a team from the University of the Basque Country is working on analogues of the C1P molecule.

Today two types of anti-inflammatory pharmaceutical drugs are available: steroids and those known as NSAID (Non-steroidal anti-inflammatory drugs). This second type are the most used, have fewer side-effects but they have an effect over a wider spectrum, i.e. they are less specific. Thus, there are no specific anti-inflammatory drugs for each cell type.

The team led by Antonio Gómez-Muñoz, from the Department of Biochemistry and Molecular Biology at the Science and Technology Faculty of the University of the Basque Country (UPV/EHU), is investigating alternatives to current anti-inflammatory drugs, creating synthetic analogues of the C1P (ceramide-1-phosphate) molecule. This molecule was discovered in 1990 in a case of human leukaemia After synthesising it in the laboratory, it was observed that it was an important mytogenic agent (provoking cell growth and blocking the natural death of the cells). Moreover, it causes cell inflammation, i.e. when the cells detect the presence of this molecule, they secrete molecules that generate inflammation - prostaglandin and cytokine cells, for example.

But this process does not occur with all types of cells. Although apparently contradictory, in some cells this same molecule functions in an anti-inflammatory manner. With this in mind, the Basque research team, annulling the inflammatory capacity of the C1P molecule, was able to use it as an anti-inflammatory drug for certain cell types without affecting other cells.

Removing one of the capabilities

To this end, and in collaboration with a research team from the University of Barcelona, they developed synthetic molecules similar in structure to that of C1P. The team is being led by doctors Josefina Casas and Gemma Fabriás, from the Consejo Superior para la Investigación Científica (CSIC) and includes Doctor Antonio Delgado from the University of Barcelona. They are the pharmacists and organic chemists who provide the UPV/EHU team with the made-to-measure molecules.

50 analogues of C1P have been tested to date of which three have provided the desired results, i.e. an anti-inflammatory function without causing inflammation in other cells These analogues do not generate prostaglandin, as does C1P and, thereby, do not produce any inflammation.

The three analogues mentioned have been tested with smooth muscle cells, with macrophages and with cancerous lung cells. The best results were obtained with the second and third type of cell. These types have been chosen as having a strong response to pro-inflammatory molecules.

Inflammation and cancer

Inflammatory processes may have various causes, an infection, for example. Chronic inflammatory diseases also exist, such as ulcerous colitis or multiple sclerosis, where, due to a constant state of inflammation, the cells are destabilised, provoking neoplasic processes, i.e. they generate new tissue of a tumorous nature. And this constant inflammation has great influence on the cells. They are destabilised and may cause an uncontrolled growth of the cells, even blocking their programmed death.

There are very few teams today researching the anti-inflammatory abilities of the C1P molecule – one team in Virginia (USA), the pharmaceutical company Novartis (Austria) and specific research teams such as that of Antonio Gómez-Muñoz, the first to investigate them in 1995. At present, the research is being undertaken at the cell level and shortly they should begin investigating with tissues and organs.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=2012&hizk=I

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>