Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quest for designer bacteria uncovers a Spy

15.02.2011
Scientists have discovered a molecular assistant called Spy that helps bacteria excel at producing proteins for medical and industrial purposes.

Bacteria are widely used to manufacture proteins used in medicine and industry, but the bugs often bungle the job. Many proteins fall apart and get cut up inside the bacteria before they can be harvested. Others collapse into useless tangles instead of folding properly, as they must in order to function normally.

A research team led by James Bardwell, who is a professor of molecular, cellular and developmental biology and of biological chemistry, as well as a Howard Hughes Medical Institute investigator, at the University of Michigan, developed a way to coerce bacteria into making large quantities of stable, functional proteins. Then, in exploring why these designer bacteria were so successful, the scientists discovered the molecular helper, Spy.

The research is scheduled for online publication Feb.13 in the journal Nature Structural & Molecular Biology.

In the first phase of the research, the team designed biosensors that directly link protein stability to the antibiotic resistance of bacteria. When a poorly folded, unstable protein is inserted into the middle of the biosensor in a bacterium, it disrupts the bug's resistance to antibiotics. When the protein is stabilized, resistance is restored.

The researchers inserted a particularly unstable protein into Escherichia coli (E. coli), which forced the bacteria to either adapt by improving protein stability or die when exposed to antibiotics. Through a "directed evolution" experiment, in which the scientists selected colonies with increasing antibiotic resistance—and increasing protein stability—the team generated designer bacteria that produced up to 700 times more of the previously unstable protein.

"It is exciting to realize that if even bacteria are asked in the right way, they can come up with good solutions to hard problems," said postdoctoral fellow Shu Quan, who spearheaded the work.

In looking to see why the designer bacteria were so much better at producing proteins, the scientists found that the efficient microbes were making much more of a small protein called Spy. Further study showed that the cradle-shaped Spy aids in protein refolding and protects unstable proteins from being cut up or sticking to other proteins.

"Our work may usher in an era of designer bacteria that have had their folding environment customized so that they can now efficiently fold normally unstable proteins," Bardwell said.

The work was conducted in Bardwell's lab at U-M. Mirek Cygler's laboratory at McGill University solved the structure of the Spy protein. In addition to Bardwell, Quan and Cygler, the paper's authors are masters students Philipp Koldewey and Stephan Hofmann; undergraduate students Nadine Kirsch and Jennifer Pfizenmaier; postdoctoral research associates Tim Tapley, Linda Foit and Guoping Ren; associate professor Ursula Jakob and associate professor Zhaohui Xu; all of U-M; and Karen Ruane and Rong Shi of McGill University.

The researchers received funding from Howard Hughes Medical Institute and the Canadian Institutes of Health Research.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Escherichia coli Medical Wellness antibiotic resistance

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>