Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s University Belfast researchers trace octopuses’ family tree

13.11.2008
Many of the world’s deep-sea octopuses evolved from species that lived in the Southern Ocean, according to new molecular evidence reported by researchers at Queen’s University Belfast.

The findings of a study funded by the National Environment Research Council and led by Dr Louise Allcock at Queen’s School of Biological Sciences and colleagues from Cambridge University and British Antarctic Survey were reported at a conference in Spain this week.

The World Conference on Marine Biodiversity is taking place in Valencia between 11 and 15 November.

The Queen’s research forms part of a decade-long global research programme to learn more about the world’s oceans.

Octopuses started migrating to new ocean basins more than 30 million years ago as Antarctica cooled and large ice-sheets grew.

These huge climatic events created a ‘thermohaline expressway’ - a northbound flow of deep cold water, providing new habitat for the animals previously confined to the sea floor around Antarctica.

Isolated in new habitat conditions, many different species evolved. Some octopuses lost their defensive ink sacs because there was no need for the defence mechanisms in the pitch black waters more than two kilometres below the surface.

Dr Allcock, who was assisted on the study by Dr Jan Strugnell and Dr Paulo Prodöhl from Queen’s, said: “It is clear from our research that climate change can have profound effects on biodiversity, with impacts even extending into habitats such as the deep oceans which you might expect would be partially protected from it.

“If octopuses radiated in this way, it’s likely that other fauna did so also, so we have helped explain where some of the deep-sea biodiversity comes from.”

This revelation into the global distribution and diversity of deep-sea fauna, to be reported this week in the respected scientific journal Cladistics, was made possible by intensive sampling during International Polar Year expeditions.

The findings form part of the first Census of Marine Life (CoML), set to be completed in late 2010. It aims to assess and explain the diversity, distribution and abundance of marine life in the oceans, past, present and future.

The project, which began in 2000, involves more than 2,000 scientists from 82 nations.

Andrea Clements | alfa
Further information:
http://www.qub.ac.uk

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>