Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen’s researchers hope new sensory devices will aid Parkinson’s & stroke patients

01.09.2008
People who have suffered a stroke or who have been diagnosed with Parkinson’s disease, could benefit from new research at Queen’s University Belfast.

Dr Cathy Craig from Queen’s School of Psychology is researching the development of new sensory devices for those who normally have difficulty controlling their movements.

The work is being funded by a grant of €860,924 from the European Research Council.

Dr Craig is the only researcher in Northern Ireland to obtain the prestigious grant from an international pool of over 9,000 applicants.

She was selected as one of the top 201 young researchers currently working in Europe by the European Research Council (ERC). Only one other researcher on the island of Ireland (Stephen Connon of Trinity College Dublin) has been selected for one of the Starting Independent Researcher’s grant so far.

Dr Craig said: “Being able to control the speed of our movements is key to survival. For some people areas of the brain used to generate this type of control are damaged (e.g. by a stroke) or are poorly developed (e.g. putting a ball in golf).

“By using engineered timing aids that will provide sensory information that can be picked up through our eyes, ears or sense of touch, the brain can learn to guide these types of movements in a more controlled way.

“We hope that the findings from this project will help us further understand how we control our movements and will provide a tangible way of helping those who have difficulty controlling their movements in a wide range of applications.”

Using a fund of €7.5 billion over seven years, the ERC expects projects such as Dr Craig’s to bring about new and unpredictable scientific discoveries which will form the basis of new industries and social innovations.

Dr Craig’s project, known as TEMPUS-G (Temporal Enhancement of Motor Performance Using Sensory Guides), will use theories about how the brain controls self-paced movements as a basis for designing sensory devices (visual, acoustic and haptic). The potential beneficial effects of using these devices will be tried and tested in both a sports (e.g. golf) and rehabilitative (e.g. stroke) context.

Dr Craig will also be using the expertise of colleagues across the University in her project, including those in the School of Electronics, Electrical Engineering and Computer Science and the School of Music and Sonic Arts.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

Further reports about: Devices ERC Parkinson TEMPUS-G sensory sensory information stroke stroke patients

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>