Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Queen’s researchers hope new sensory devices will aid Parkinson’s & stroke patients

People who have suffered a stroke or who have been diagnosed with Parkinson’s disease, could benefit from new research at Queen’s University Belfast.

Dr Cathy Craig from Queen’s School of Psychology is researching the development of new sensory devices for those who normally have difficulty controlling their movements.

The work is being funded by a grant of €860,924 from the European Research Council.

Dr Craig is the only researcher in Northern Ireland to obtain the prestigious grant from an international pool of over 9,000 applicants.

She was selected as one of the top 201 young researchers currently working in Europe by the European Research Council (ERC). Only one other researcher on the island of Ireland (Stephen Connon of Trinity College Dublin) has been selected for one of the Starting Independent Researcher’s grant so far.

Dr Craig said: “Being able to control the speed of our movements is key to survival. For some people areas of the brain used to generate this type of control are damaged (e.g. by a stroke) or are poorly developed (e.g. putting a ball in golf).

“By using engineered timing aids that will provide sensory information that can be picked up through our eyes, ears or sense of touch, the brain can learn to guide these types of movements in a more controlled way.

“We hope that the findings from this project will help us further understand how we control our movements and will provide a tangible way of helping those who have difficulty controlling their movements in a wide range of applications.”

Using a fund of €7.5 billion over seven years, the ERC expects projects such as Dr Craig’s to bring about new and unpredictable scientific discoveries which will form the basis of new industries and social innovations.

Dr Craig’s project, known as TEMPUS-G (Temporal Enhancement of Motor Performance Using Sensory Guides), will use theories about how the brain controls self-paced movements as a basis for designing sensory devices (visual, acoustic and haptic). The potential beneficial effects of using these devices will be tried and tested in both a sports (e.g. golf) and rehabilitative (e.g. stroke) context.

Dr Craig will also be using the expertise of colleagues across the University in her project, including those in the School of Electronics, Electrical Engineering and Computer Science and the School of Music and Sonic Arts.

Lisa Mitchell | alfa
Further information:

Further reports about: Devices ERC Parkinson TEMPUS-G sensory sensory information stroke stroke patients

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>