Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's University scientists discover new method for studying molecules

18.11.2010
Researchers at Queen's University have discovered the method for studying oxygen in large molecular systems. The findings will help in the study of proteins, DNA, RNA and other molecular structures.

Biological molecules make up all living creatures on earth and contain four major elements – hydrogen, carbon, nitrogen and oxygen. But until now scientists were only able to use nuclear magnetic resonance (NMR) to study three out of the four elements in the molecule puzzle because oxygen wavelengths were difficult to detect.

"Oxygen signals were so weak, so to speak, that no one could make use of them," says chemistry professor Gang Wu. "Now there is a way of detecting them even in complex biomolecular systems."

Dr. Wu and his colleagues used one of the strongest NMR spectrometers in the world, located at the National Ultrahigh-Field NMR Facility for Solids in Ottawa, to create a magnetic field in which oxygen's wavelength could be detected. They also enriched the oxygen in the molecule using isotope enrichment, and implemented new NMR techniques to boost the sensitivity for detecting weak signals.

The result is an amplified oxygen wavelength that can be studied. Scientists can now examine all four major elements and learn more about the chemical structure and interaction of large molecules.

Dr. Wu's colleagues include lead author and Queen's post-doctoral fellow Jianfeng Zhu, Eric Ye (University of Ottawa) and Victor Terskikh (NRC Steacie Institute for Molecular Sciences).

The findings were recently featured as a cover article in Angewandte Chemie, one of the world's leading chemistry journals.

Kristyn Wallace | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>