Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Queen's University researchers locate impulse control center in brain

Impulsive behaviour can be improved with training and the improvement is marked by specific brain changes, according to a new Queen's University study.

A research team led by neuroscience PhD student Scott Hayton has pinpointed the area of the brain that controls impulsive behavior and the mechanisms that affect how impulsive behavior is learned. The findings could have a significant impact on the diagnosis and treatment of several disorders and addictions, including ADHD and alcoholism.

"In the classroom, kids often blurt out answers before they raise their hand. With time, they learn to hold their tongue and put up their hand until the teacher calls them. We wanted to know how this type of learning occurs in the brain," says Mr. Hayton, a PhD student at the Centre for Neuroscience Studies at Queen's. "Our research basically told us where the memory for this type of inhibition is in the brain, and how it is encoded."

The team trained rats to control impulsive responses until a signal was presented. Electrical signals between cells in the brain's frontal lobe grew stronger as they learned to control their impulses. This showed that impulsivity is represented, in a specific brain region, by a change in communication between neurons.

Impulsivity is often thought of as a personality trait, something that makes one person different from another.

Children who have difficulty learning to control a response often have behavioral problems which continue into adulthood, says Professor Cella Olmstead, the principal investigator on the study. She notes that impulsivity is a primary feature of many disorders including addiction, ADHD, obsessive compulsive disorder and gambling. Identifying the brain region and mechanism that controls impulsivity is a critical step in the diagnosis and treatment of these conditions.

"In conditions where learning does not occur properly, it is possible that it is this mechanism that has been impaired," adds co-investigator neuroscience Professor Eric Dumont.

The findings were recently published in The Journal of Neuroscience.

Kristyn Wallace | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>