Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's University professor's chemistry discovery may revolutionize cooking oil production

30.03.2010
A Queen's University chemistry professor has invented a special solvent that may make cooking oil production more environmentally friendly.

Philip Jessop, Canada Research Chair in Green Chemistry, has created a solvent that – when combined with carbon dioxide – extracts oil from soybeans. Industries currently make cooking oils using hexane, a cheap, flammable solvent that is a neurotoxin and creates smog. The process also involves distillation, which uses large amounts of energy.

"Carbon dioxide is famous for global warming – it's everybody's favourite gas to hate these days," says Professor Jessop, who specializes in green chemistry. "My research group is trying to figure out if we can use it for something useful. I figure we may not be able to recycle all the carbon dioxide out there but we can recycle a bit of it and make it contribute to society in a positive way."

Jessop's new method of making oil involves a "switchable" solvent. This solvent is hydrophobic, meaning it mixes with oils and doesn't like water. But when carbon dioxide is added, the solvent becomes hydrophilic, meaning it mixes with water and doesn't like to be in oil. So when carbonated water – carbon dioxide and water – is added to a mixture of the solvent and soybeans, the oil is extracted out of the soybeans and collected. When the carbon dioxide is removed, the solvent switches back to its hydrophobic state.

"The water and the solvent can be used again so everything is recycled. The end result is you have extracted soybean oil and there is no energy-consuming distillation required," says Professor Jessop, who who did research in the 1990s under the supervision of Nobel Chemistry Prize winner Ryoji Noyori.

While this process has only been done in labs, Professor Jessop says he has already heard from cooking oil companies and GreenCentre Canada who are interested in his research. But the solvent is still years away before it can ever be used in large-scale oil manufacturing.

Professor Jessop is trying to get rid of the use of volatile chemicals such as hexane by giving industries an option to use a manufacturing process that is both economically and environmentally friendly.

"The advantage of hexane is that it's cheap. When you do green chemistry, you have to worry about cost. You can't just say 'Look at this, industry, it's greener!' If it costs 10 times as much, no one is going to use it," Professor Jessop says. "So next we have to do the economic calculations to see how much it is going to cost. If manufacturing with this environmentally friendly solvent is really expensive compared to the hexane, we have to figure out how we can we make it cheaper."

The results of Jessop's research have been published in the journal Green Chemistry.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>