Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's University professor's chemistry discovery may revolutionize cooking oil production

30.03.2010
A Queen's University chemistry professor has invented a special solvent that may make cooking oil production more environmentally friendly.

Philip Jessop, Canada Research Chair in Green Chemistry, has created a solvent that – when combined with carbon dioxide – extracts oil from soybeans. Industries currently make cooking oils using hexane, a cheap, flammable solvent that is a neurotoxin and creates smog. The process also involves distillation, which uses large amounts of energy.

"Carbon dioxide is famous for global warming – it's everybody's favourite gas to hate these days," says Professor Jessop, who specializes in green chemistry. "My research group is trying to figure out if we can use it for something useful. I figure we may not be able to recycle all the carbon dioxide out there but we can recycle a bit of it and make it contribute to society in a positive way."

Jessop's new method of making oil involves a "switchable" solvent. This solvent is hydrophobic, meaning it mixes with oils and doesn't like water. But when carbon dioxide is added, the solvent becomes hydrophilic, meaning it mixes with water and doesn't like to be in oil. So when carbonated water – carbon dioxide and water – is added to a mixture of the solvent and soybeans, the oil is extracted out of the soybeans and collected. When the carbon dioxide is removed, the solvent switches back to its hydrophobic state.

"The water and the solvent can be used again so everything is recycled. The end result is you have extracted soybean oil and there is no energy-consuming distillation required," says Professor Jessop, who who did research in the 1990s under the supervision of Nobel Chemistry Prize winner Ryoji Noyori.

While this process has only been done in labs, Professor Jessop says he has already heard from cooking oil companies and GreenCentre Canada who are interested in his research. But the solvent is still years away before it can ever be used in large-scale oil manufacturing.

Professor Jessop is trying to get rid of the use of volatile chemicals such as hexane by giving industries an option to use a manufacturing process that is both economically and environmentally friendly.

"The advantage of hexane is that it's cheap. When you do green chemistry, you have to worry about cost. You can't just say 'Look at this, industry, it's greener!' If it costs 10 times as much, no one is going to use it," Professor Jessop says. "So next we have to do the economic calculations to see how much it is going to cost. If manufacturing with this environmentally friendly solvent is really expensive compared to the hexane, we have to figure out how we can we make it cheaper."

The results of Jessop's research have been published in the journal Green Chemistry.

Michael Onesi | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>