Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015

Quasi-sexual gene transfer and recombination drives genetic diversity of hot spring bacteria

New work from a team including Carnegie's Devaki Bhaya and Michelle Davison used massive DNA sequencing of bacterial populations that grow in the hot springs in Yellowstone National Park to determine their genetic diversity and explore the underlying evolutionary dynamics.


A microbial mat community in Octopus Spring, Yellowstone National Park, is shown courtesy of Michelle Davison.

Credit: Michelle Davison

They found an unexpectedly high degree of sharing and exchange of genetic material between the tiny, green, photosynthetic cyanobacteria Synechococcus, which are abundant in these scalding, inhospitable environments.

The team discovered that the pattern of differences in genome organization between various individuals of the same species indicates that the bacteria transfer DNA, including whole genes, back and forth. This swapping or "recombination" allows gene variations to spread rapidly through a population. Their findings are published by Science.

There is a great deal of small-scale genetic diversity in naturally occurring bacterial populations--as opposed to the carefully managed bacterial clones used in laboratory research and clinical work. Bacterial populations in the natural environment represent a dynamic genetic resource that changes over time, but the quantification of this diversity, and the exact mechanisms creating its dynamics, has remained elusive.

"Biologists have long been interested in determining the evolutionary and ecological forces that drive the population genetics of bacterial communities," Bhaya explained.

The research team, which also included lead author Michael Rosen as well as Daniel Fisher, both of the Applied Physics Department at Stanford University, set out to investigate this question by combining the power of so-called "deep sequencing" ( highly detailed and extensive DNA sequence determination) with powerful statistical analysis.

Several possible scenarios were considered. For instance, one theory predicts that bacterial populations are genetically diverse because they adapt to their surrounding conditions on a very small-scale, local level, leading to the establishment of distinct subpopulations, called ecotypes.

Another possibility was that all of the diversity in the bacterial genes is 'neutral'--no particular version of a gene makes an organism more or less fit for its environment. Bacteria reproduce by asexual division, which means that each new generation is stuck with a nearly exact replica of its sole parent's genetic material. Genetic changes can occur through mutation or the transfer of segments of DNA between individual organisms.

Using sophisticated statistical analysis of the massive "DNA deep sequencing" data enabled the team to trace the evolutionary forces that shaped these natural Synechococcus populations. They found that neither models of neutral drift, nor the concept of micro-niches of different ecotypes fit the data.

Rather, the population occupies a broad niche that includes a range of environmental conditions. Diversity is created by frequent swapping of genetic material between organisms. This apparently happens often enough that the population can be viewed as "quasi-sexual" in comparison to organisms like humans, where the process of sexual reproduction, specifically fertilization, combines genes from two parents.

In sexual reproduction, new combinations of genes are the rule. Although this is not generally true for bacterial populations, for these particular hot spring bacteria, new combinations are also the rule, rather than the exception. Since DNA moves between individuals, a new generation will not be stuck with just a copy of its parental genes. Because of this level of variation, natural selection acts on the level of individual genes, not the whole genome. Transfers of DNA happen so much that bacteria can have all sorts of different combinations of genes and gene variants.

"Without deep sequencing and careful analysis, we never would have been able to detect and identify the forces at work and it will be exciting to discover if these insights extend to other microbial communities," Bhaya noted. "Microbial diversity is found everywhere from deep sea vents to the human gut or in association with plant roots. Using methods such as single cell sequencing, proteomics, and microscopy will allow exploration of this invisible and important world with great accuracy and depth."

###

This work was supported by the National Science Foundation, the Carnegie Institution for Science, a Stanford Graduate Fellowship, and an IBM fellowship

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Devaki Bhaya
dbhaya@carnegiescience.edu
650-739-4282

 @carnegiescience

http://www.ciw.edu 

Devaki Bhaya | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>