Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015

Quasi-sexual gene transfer and recombination drives genetic diversity of hot spring bacteria

New work from a team including Carnegie's Devaki Bhaya and Michelle Davison used massive DNA sequencing of bacterial populations that grow in the hot springs in Yellowstone National Park to determine their genetic diversity and explore the underlying evolutionary dynamics.


A microbial mat community in Octopus Spring, Yellowstone National Park, is shown courtesy of Michelle Davison.

Credit: Michelle Davison

They found an unexpectedly high degree of sharing and exchange of genetic material between the tiny, green, photosynthetic cyanobacteria Synechococcus, which are abundant in these scalding, inhospitable environments.

The team discovered that the pattern of differences in genome organization between various individuals of the same species indicates that the bacteria transfer DNA, including whole genes, back and forth. This swapping or "recombination" allows gene variations to spread rapidly through a population. Their findings are published by Science.

There is a great deal of small-scale genetic diversity in naturally occurring bacterial populations--as opposed to the carefully managed bacterial clones used in laboratory research and clinical work. Bacterial populations in the natural environment represent a dynamic genetic resource that changes over time, but the quantification of this diversity, and the exact mechanisms creating its dynamics, has remained elusive.

"Biologists have long been interested in determining the evolutionary and ecological forces that drive the population genetics of bacterial communities," Bhaya explained.

The research team, which also included lead author Michael Rosen as well as Daniel Fisher, both of the Applied Physics Department at Stanford University, set out to investigate this question by combining the power of so-called "deep sequencing" ( highly detailed and extensive DNA sequence determination) with powerful statistical analysis.

Several possible scenarios were considered. For instance, one theory predicts that bacterial populations are genetically diverse because they adapt to their surrounding conditions on a very small-scale, local level, leading to the establishment of distinct subpopulations, called ecotypes.

Another possibility was that all of the diversity in the bacterial genes is 'neutral'--no particular version of a gene makes an organism more or less fit for its environment. Bacteria reproduce by asexual division, which means that each new generation is stuck with a nearly exact replica of its sole parent's genetic material. Genetic changes can occur through mutation or the transfer of segments of DNA between individual organisms.

Using sophisticated statistical analysis of the massive "DNA deep sequencing" data enabled the team to trace the evolutionary forces that shaped these natural Synechococcus populations. They found that neither models of neutral drift, nor the concept of micro-niches of different ecotypes fit the data.

Rather, the population occupies a broad niche that includes a range of environmental conditions. Diversity is created by frequent swapping of genetic material between organisms. This apparently happens often enough that the population can be viewed as "quasi-sexual" in comparison to organisms like humans, where the process of sexual reproduction, specifically fertilization, combines genes from two parents.

In sexual reproduction, new combinations of genes are the rule. Although this is not generally true for bacterial populations, for these particular hot spring bacteria, new combinations are also the rule, rather than the exception. Since DNA moves between individuals, a new generation will not be stuck with just a copy of its parental genes. Because of this level of variation, natural selection acts on the level of individual genes, not the whole genome. Transfers of DNA happen so much that bacteria can have all sorts of different combinations of genes and gene variants.

"Without deep sequencing and careful analysis, we never would have been able to detect and identify the forces at work and it will be exciting to discover if these insights extend to other microbial communities," Bhaya noted. "Microbial diversity is found everywhere from deep sea vents to the human gut or in association with plant roots. Using methods such as single cell sequencing, proteomics, and microscopy will allow exploration of this invisible and important world with great accuracy and depth."

###

This work was supported by the National Science Foundation, the Carnegie Institution for Science, a Stanford Graduate Fellowship, and an IBM fellowship

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Devaki Bhaya
dbhaya@carnegiescience.edu
650-739-4282

 @carnegiescience

http://www.ciw.edu 

Devaki Bhaya | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>