Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015

Quasi-sexual gene transfer and recombination drives genetic diversity of hot spring bacteria

New work from a team including Carnegie's Devaki Bhaya and Michelle Davison used massive DNA sequencing of bacterial populations that grow in the hot springs in Yellowstone National Park to determine their genetic diversity and explore the underlying evolutionary dynamics.


A microbial mat community in Octopus Spring, Yellowstone National Park, is shown courtesy of Michelle Davison.

Credit: Michelle Davison

They found an unexpectedly high degree of sharing and exchange of genetic material between the tiny, green, photosynthetic cyanobacteria Synechococcus, which are abundant in these scalding, inhospitable environments.

The team discovered that the pattern of differences in genome organization between various individuals of the same species indicates that the bacteria transfer DNA, including whole genes, back and forth. This swapping or "recombination" allows gene variations to spread rapidly through a population. Their findings are published by Science.

There is a great deal of small-scale genetic diversity in naturally occurring bacterial populations--as opposed to the carefully managed bacterial clones used in laboratory research and clinical work. Bacterial populations in the natural environment represent a dynamic genetic resource that changes over time, but the quantification of this diversity, and the exact mechanisms creating its dynamics, has remained elusive.

"Biologists have long been interested in determining the evolutionary and ecological forces that drive the population genetics of bacterial communities," Bhaya explained.

The research team, which also included lead author Michael Rosen as well as Daniel Fisher, both of the Applied Physics Department at Stanford University, set out to investigate this question by combining the power of so-called "deep sequencing" ( highly detailed and extensive DNA sequence determination) with powerful statistical analysis.

Several possible scenarios were considered. For instance, one theory predicts that bacterial populations are genetically diverse because they adapt to their surrounding conditions on a very small-scale, local level, leading to the establishment of distinct subpopulations, called ecotypes.

Another possibility was that all of the diversity in the bacterial genes is 'neutral'--no particular version of a gene makes an organism more or less fit for its environment. Bacteria reproduce by asexual division, which means that each new generation is stuck with a nearly exact replica of its sole parent's genetic material. Genetic changes can occur through mutation or the transfer of segments of DNA between individual organisms.

Using sophisticated statistical analysis of the massive "DNA deep sequencing" data enabled the team to trace the evolutionary forces that shaped these natural Synechococcus populations. They found that neither models of neutral drift, nor the concept of micro-niches of different ecotypes fit the data.

Rather, the population occupies a broad niche that includes a range of environmental conditions. Diversity is created by frequent swapping of genetic material between organisms. This apparently happens often enough that the population can be viewed as "quasi-sexual" in comparison to organisms like humans, where the process of sexual reproduction, specifically fertilization, combines genes from two parents.

In sexual reproduction, new combinations of genes are the rule. Although this is not generally true for bacterial populations, for these particular hot spring bacteria, new combinations are also the rule, rather than the exception. Since DNA moves between individuals, a new generation will not be stuck with just a copy of its parental genes. Because of this level of variation, natural selection acts on the level of individual genes, not the whole genome. Transfers of DNA happen so much that bacteria can have all sorts of different combinations of genes and gene variants.

"Without deep sequencing and careful analysis, we never would have been able to detect and identify the forces at work and it will be exciting to discover if these insights extend to other microbial communities," Bhaya noted. "Microbial diversity is found everywhere from deep sea vents to the human gut or in association with plant roots. Using methods such as single cell sequencing, proteomics, and microscopy will allow exploration of this invisible and important world with great accuracy and depth."

###

This work was supported by the National Science Foundation, the Carnegie Institution for Science, a Stanford Graduate Fellowship, and an IBM fellowship

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Devaki Bhaya
dbhaya@carnegiescience.edu
650-739-4282

 @carnegiescience

http://www.ciw.edu 

Devaki Bhaya | EurekAlert!

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>