Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantitative imaging application to gut and ear cells are reported in 2 Nature papers

16.01.2012
From tracking activities within bacteria to creating images of molecules that make up human hair, several experiments have already demonstrated the unique abilities of the revolutionary imaging technique called multi-isotope imaging mass spectometry, or MIMS, developed by researchers at Brigham and Women's Hospital (BWH). MIMS can produce high-resolution, quantitative three-dimensional images of stable isotope tags within subcellular compartments in tissue sections or cells.

With its use of stable isotopes as tracers, MIMS has opened the door for biomedical researchers to answer various biological questions, as two new studies have demonstrated.

These studies looked at the use of MIMS in tracking cell division in intestinal stem cells, lipid turnover in Drosophila flies, protein turnover in ear cells, and opened the way to human application by detecting the formation of new white blood cells. Both studies will be published in Nature online on January 15, 2012 and in print on January 26, 2012.

In the first study, researchers used MIMS to test the much debated "immortal strand hypothesis" which claims that as stem cells divide, the older template DNA remains together in a stem cell, as the newer DNA is passed to cells that differentiate forming the digestive lining of the small intestine.

By tagging DNA with stable isotope tracers, researchers tracked DNA replication as cells divided. They found that in any situation DNA segregation was random, thereby disproving the immortal strand hypothesis.

The research opened another door by studying lipid metabolism within single lipid droplets of the fat body and of the central nervous system of Drosophila larvae. The researchers were also able to translate their work to humans. In a pilot study, they used MIMS to successfully track the formation of new white blood cells after administering isotope tracers in a healthy human volunteer.

The second study demonstrated that protein turnover in stereocilia in the inner ear is extremely slow contrary to the prevalent belief in the field. Stereocilia are hair-like projections found in cells of the inner ear that are responsible for hearing and maintaining balance. Using MIMS, researchers saw that protein turnover was very slow throughout the stereocilia, except the tip at the location of the mechanoelectrical transduction apparatus.

MIMS was created by developing several tools—an ion microscope/secondary-ion mass spectrometer, labeling with stable isotopes, and quantitative image-analysis software. Unlike other imaging technologies, MIMS does not require staining or the use of radioactive labeling. MIMS enables researchers to conduct experiments with safe, non-toxic stable isotopes, which are naturally occurring components of all living matter.

Claude Lechene, MD, professor in the Division of Genetics, Department of Medicine and director of the National Resource for Imaging Mass Spectrometry (National Institutes of Health), was the senior study author for both studies.

The first study was a collaboration among BWH researchers and Alex Gould, PhD, and Andrew Bailey, PhD from the Medical Research Council National Institute for Medical Research (UK). BWH researchers a part of the first study are lead study author Matthew Steinhauser, MD, Division of Cardiovascular Medicine, Department of Medicine; Samuel Senyo, PhD, Division of Cardiovascular Medicine, Department of Medicine; Christelle Guillermier, PhD, Division of Genetics, Department of Medicine; Todd Perlstein, MD, Division of Cardiovascular Medicine, Department of Medicine; and Richard Lee, MD, Division of Cardiovascular Medicine, Department of Medicine.

The second study was a collaboration among BWH researchers and researchers from the following institutions: Duan-Sun Zhang, PhD (lead study author) and Valeria Piazza, PhD in the laboratory of David Corey, PhD (HHMI investigator), Department of Neurobiology, Harvard Medical School. Other researchers that contributed to the study include Benjamin Perrin, PhD and James Ervasti, PhD both from the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota and Agnieszka Rzadzinska, MD, and Haydn Prosser, PhD, of the Wellcome Trust Sanger Institute (UK). BWH researchers a part of the second study are Joseph Collin Poczatek, technical research assistant and Mei Wang, senior research assistant both in the Division of Genetics, Department of Medicine.

Research for the first study was supported by the National Institutes of Health, Ellison Medical Foundation, Human Frontier Science Program, American Heart Association, Future Leaders of Cardiovascular Medicine, Medical Research Council, Harvard Stem Cell Institute, and Cambridge Isotope Laboratories.

Research for the second study was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering, National Science Foundation Division of Integrative Biology and Neuroscience, and the Wellcome Trust.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), http://www.brighamandwomens.org/research, BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit http://www.brighamandwomens.org.

Marjorie Montemayor-Quellenberg | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>