Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantitative Approaches Provide New Perspective on Development of Antibiotic Resistance

29.11.2013
Using quantitative models of bacterial growth, a team of UC San Diego biophysicists has discovered the bizarre way by which antibiotic resistance allows bacteria to multiply in the presence of antibiotics, a growing health problem in hospitals and nursing homes across the United States.

Two months ago, the Centers for Disease Control and Prevention issued a sobering report estimating that antibiotic-resistant bacteria last year caused more than two million illnesses and approximately 23,000 deaths in the United States. Treating these infections, the report said, added $20 billion last year to our already overburdened health care system.


The researchers found a range of drug doses for which genetically identical bacterial cells exhibited drastically different behaviors: while a substantial fraction of cells stopped growing despite carrying the resistance gene, other cells continued to grow at a high rate—a phenomenon called “growth bistability.” Credit: J. Barrett Deris

Many approaches are now being employed by public health officials to limit the spread of antibiotic resistance in bacteria—such as limiting the use of antibiotics in livestock, controlling prescriptions of antibiotics and developing new drugs against bacteria already resistant to conventional drug treatments. But understanding how bacteria grow and evolve drug resistance could also help stop its spread by allowing scientists to target the process of evolution itself.

“Understanding how bacteria harboring antibiotic resistance grow in the presence of antibiotics is critical for predicting the spread and evolution of drug resistance,” the UC San Diego scientists say in an article published in the November 29 issue of the journal Science.

In their study, the researchers found that the expression of antibiotic resistance genes in strains of the model bacterium E. coli depends on a complex relationship between the bacterial colony’s growth status and the effectiveness of the resistance mechanism.

“In the course of developing complete resistance to a drug, a strain of bacteria often first acquires a mechanism with very limited efficacy,” says Terry Hwa, a professor of physics and biology who headed the research effort. “While much effort has been spent elucidating individually how a drug inhibits bacterial growth and how a resistance mechanism neutralizes the action of a drug, little is known previously about how the two play off of each other during the critical phase where drug resistance evolves towards full strength.”

According to Hwa, the interaction between drug and drug-resistance is complex because the degree of drug resistance expressed in a bacterium depends on its state of growth, which in turn depends on the efficacy of drug, with the latter depending on the expression of drug resistance itself. For a class of common drugs, the researchers realized that this chain of circular relations acted effectively to promote the efficacy of drug resistance for an intermediate range of drug doses.

The use of predictive quantitative models was instrumental in guiding the researchers to formulate critical experiments to dissect this complexity. In their experiments, E. coli cells possessing varying degrees of resistance to an antibiotic were grown in carefully controlled environments kept at different drug doses in “microfluidic” devices—which permitted the researchers to manipulate tiny amounts of fluid and allowed them to continuously observe the individual cells.

Hwa and his team found a range of drug doses for which genetically identical bacterial cells exhibited drastically different behaviors: while a substantial fraction of cells stopped growing despite carrying the resistance gene, other cells continued to grow at a high rate. This phenomenon, called “growth bistability,” occurred as quantitatively predicted by the researchers’ mathematical models, in terms of both the dependence on the drug dose, which is set by the environment, and on the degree of drug resistance a strain possesses, which is set by the genetic makeup of the strain and is subject to change during evolution.

“Exposing this behavior generates insight into the evolution of drug resistance,” says Hwa. “With this model we can chart how resistance is picked up and evaluate quantitatively the efficacy of a drug.” However, this model has only been established for one class of drugs and one class of drug-resistance mechanisms. Hwa believes it is important to establish such predictive models for all the common drugs in pathogenic bacterial species.

“My hope,” he adds, “is to get the message out to drug companies and hospitals that there is an informative, quantitative way to look at the action of a drug on bacteria and at the consequences of using a drug on bacteria as they try to pick up resistance, and that this approach can be incorporated in both the design and evaluation of drug efficacy in clinically relevant settings.”

Hwa says the principle of interaction between drug and drug-resistance is important to understand not only for the evolution of antibiotics, but also for the emergence of drug resistance in other diseases. A prominent example is the rapid emergence of cancer lines resistant to drug treatment, which underlies most failures in cancer drug therapies. While there are obviously numerous differences between the evolution of drug resistance in bacteria and in cancer, Hwa noted that the connection between the two was sufficient to motivate the Physical Science-Oncology program of the National Cancer Institute to co-sponsor this study.

Other UC San Diego scientists involved in the discovery were J. Barrett Deris, Minsu Kim, Zhongge Zhang, Hiroyuki Okano, Rutger Hermsen and Alexander Groisman, an associate professor of physics at UC San Diego. Funding for the study was provided by the National Institutes of Health and the National Science Foundation.

Media Contact
Kim McDonald, 858-534-7572, kmcdonald@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu
http://ucsdnews.ucsd.edu/pressrelease/quantitative_approaches_provide_new_perspective_on_development_of_antibioti

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>