Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pyruvate oxidation is critical determinant of pancreatic islet number and β-cell mass

06.08.2014

Researchers at the University at Buffalo, led by Dr. Mulchand Patel and also at Lawson Health Research Institute and Western Ontario, London, Canada, led by Dr. David Hill, collaboratively evaluated the role of the mitochondrial multienzyme pyruvate dehydrogenase complex in the regulation of pancreatic β-cell development and maturation in the immediate postnatal period in mice.

This study, reported in the August 2014 issue of Experimental Biology and Medicine, demonstrated that the pyruvate dehydrogenase complex is not only required for insulin gene expression and glucose-stimulated insulin secretion, but also directly influences β-cell growth and maturity. This places glucose metabolism as a direct regulator of β-cell mass and plasticity.

Glucose metabolism within the pancreatic β-cells is crucial for insulin gene expression and hormone exocytosis, but there is increasing evidence that glucose metabolic pathways are also important for β-cell development and the maintenance of β-cell mass in adult life.

A targeted deletion of glucokinase in mouse β-cells not only prevents glucose-stimulated insulin secretion, but also β-cell proliferation and is associated with increased apoptosis. A direct manipulation of glucose availability to the embryonic pancreas in tissue culture showed that it was necessary for both α- and β-cell development through the regulation of the transcription factors Neurogenin 3 (Neurog3) and NeuroD.

In the article by Patel et al., the authors show that a targeted β-cell deletion of the α subunit of the pyruvate dehydrogenase component, a major rate-limiting enzyme for the pyruvate dehydrogenase complex that regulates pyruvate metabolism from glucose in the mitochondria, in mouse resulted in reduced insulin availability and glucose-sensitive release as would be expected.

But they also demonstrate that β-cell number was reduced postnatally as was the expression of Neurog3, NeuroD and Pdx1. Interestingly, there was also a reduction in the numbers of insulin-immunopositive, extra-islet small endocrine cell clusters, a possible source of new β-cells from progenitors.

The new findings reinforce the concept that pathways controlling glucose metabolism in β-cells are as important for maintenance of β-cell mass as are hormones and growth factors, such as glucagon-like polypeptide 1 (GLP1).

"These findings show that glucose metabolism is a major regulator of β-cell mass which is likely to act independently of other signaling pathways, such as insulin receptor substrate 2", said Dr. Mulchand Patel, senior author of the study and SUNY Distinguished Professor, Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "the study by Patel et al utilizes a mouse knockout model to disrupt the pyruvate dehydrogenase complex (PDC) activity to study the role of PDC in pancreatic β-cell development. They demonstrate that PDC has a direct impact upon the regulation of β-cell mass as well as plasticity."

###

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

M.S. Patel | Eurek Alert!

Further reports about: Biology Medicine SUNY dehydrogenase islet metabolism pancreatic pathways plasticity

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>