Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pyruvate oxidation is critical determinant of pancreatic islet number and β-cell mass

06.08.2014

Researchers at the University at Buffalo, led by Dr. Mulchand Patel and also at Lawson Health Research Institute and Western Ontario, London, Canada, led by Dr. David Hill, collaboratively evaluated the role of the mitochondrial multienzyme pyruvate dehydrogenase complex in the regulation of pancreatic β-cell development and maturation in the immediate postnatal period in mice.

This study, reported in the August 2014 issue of Experimental Biology and Medicine, demonstrated that the pyruvate dehydrogenase complex is not only required for insulin gene expression and glucose-stimulated insulin secretion, but also directly influences β-cell growth and maturity. This places glucose metabolism as a direct regulator of β-cell mass and plasticity.

Glucose metabolism within the pancreatic β-cells is crucial for insulin gene expression and hormone exocytosis, but there is increasing evidence that glucose metabolic pathways are also important for β-cell development and the maintenance of β-cell mass in adult life.

A targeted deletion of glucokinase in mouse β-cells not only prevents glucose-stimulated insulin secretion, but also β-cell proliferation and is associated with increased apoptosis. A direct manipulation of glucose availability to the embryonic pancreas in tissue culture showed that it was necessary for both α- and β-cell development through the regulation of the transcription factors Neurogenin 3 (Neurog3) and NeuroD.

In the article by Patel et al., the authors show that a targeted β-cell deletion of the α subunit of the pyruvate dehydrogenase component, a major rate-limiting enzyme for the pyruvate dehydrogenase complex that regulates pyruvate metabolism from glucose in the mitochondria, in mouse resulted in reduced insulin availability and glucose-sensitive release as would be expected.

But they also demonstrate that β-cell number was reduced postnatally as was the expression of Neurog3, NeuroD and Pdx1. Interestingly, there was also a reduction in the numbers of insulin-immunopositive, extra-islet small endocrine cell clusters, a possible source of new β-cells from progenitors.

The new findings reinforce the concept that pathways controlling glucose metabolism in β-cells are as important for maintenance of β-cell mass as are hormones and growth factors, such as glucagon-like polypeptide 1 (GLP1).

"These findings show that glucose metabolism is a major regulator of β-cell mass which is likely to act independently of other signaling pathways, such as insulin receptor substrate 2", said Dr. Mulchand Patel, senior author of the study and SUNY Distinguished Professor, Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "the study by Patel et al utilizes a mouse knockout model to disrupt the pyruvate dehydrogenase complex (PDC) activity to study the role of PDC in pancreatic β-cell development. They demonstrate that PDC has a direct impact upon the regulation of β-cell mass as well as plasticity."

###

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

M.S. Patel | Eurek Alert!

Further reports about: Biology Medicine SUNY dehydrogenase islet metabolism pancreatic pathways plasticity

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>