Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Putting the squeeze on rare earth metals

‘Pincer’ molecules trap reactive rare earth elements into previously unseen hydrogen-infused structures

Rare-earth metals are a series of elements that represent one of the final frontiers of chemical exploration. The vigorous reactivity of these substances, however, has made it difficult for researchers to transform them into stable materials with well-defined structures. But when they succeed, the payoff can be enormous—rare-earth compounds have important applications in areas ranging from catalysis to clean energy.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have discovered a new way to isolate rare-earth metals as hydrogen-infused crystals by using wedge-shaped bis(phosphinophenyl)amido (PNP) ligands to ‘pinch’ them in place[1]. These ligands squeeze rare-earth yttrium atoms together tighter than any previous material, and can even stabilize highly volatile charged complexes.

Metallic compounds that incorporate multiple hydrogen atoms, or polyhydrides, into their frameworks are useful to chemists because they provide some of the purest understandings of bonding and reactivity available. Previously, Hou’s team isolated an yttrium polyhydride containing a hydrogen ligand that simultaneously bonds to four metals[2]. This compound sparked remarkable chemical curiosity because of its structural novelty.

According to Hou, the trick to producing rare-earth polyhydrides is to surround them with large, cumbersome molecules that easily pack together to form crystals. The distinct structure of PNP ligands—two phosphorus atoms, linked together by a rigid aromatic–amino core that can bind to metals with a pincer-like grip—made this ligand a promising candidate for the researchers’ investigation.

By first substituting extra methyl units onto the aromatic backbone of PNP to increase its bulkiness, and then mixing the ligand with an yttrium alkyl precursor and hydrogen gas, the team synthesized pale yellow crystals of a new yttrium polyhydride complex. X-ray structural analysis revealed that three yttrium atoms, held in place by PNP ‘pincers’, were interlinked by a set of double- and triple-bridged hydrogen ligands (Fig. 1). This intricate network of bonds produced the shortest yttrium–yttrium distance ever recorded—an extraordinary packing density that may be critical for future hydrogen-storage applications.

The researchers found that an ammonium proton could remove a hydride from the complex without disrupting crystallization, yielding the first-ever cationic tri- and di-yttrium polyhydrides. The charged nature of these materials should impart potent chemical activity, attributes which Hou and his team are currently investigating. “Our results clearly demonstrate the vital importance of ligand-tuning in the isolation and characterization of rare earth polyhydrides, and should encourage further explorations in this burgeoning area,” he says.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Cheng, J., Shima, T. & Hou, Z. Rare-earth polyhydride complexes bearing bis(phosphinophenyl)amido pincer ligands. Angewandte Chemie International Edition 50, 1857–1860 (2011).

[2] Hou, Z., Nishiura, M. & Shima, T. Synthesis and reactions of polynuclear polyhydrido rare earth metal complexes containing “(C5Me4SiMe3)LnH2” units: A new frontier in rare earth metal hydride chemistry. European Journal of Inorganic Chemistry 18, 2535–2545 (2007).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>