Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the squeeze on rare earth metals

18.04.2011
‘Pincer’ molecules trap reactive rare earth elements into previously unseen hydrogen-infused structures

Rare-earth metals are a series of elements that represent one of the final frontiers of chemical exploration. The vigorous reactivity of these substances, however, has made it difficult for researchers to transform them into stable materials with well-defined structures. But when they succeed, the payoff can be enormous—rare-earth compounds have important applications in areas ranging from catalysis to clean energy.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have discovered a new way to isolate rare-earth metals as hydrogen-infused crystals by using wedge-shaped bis(phosphinophenyl)amido (PNP) ligands to ‘pinch’ them in place[1]. These ligands squeeze rare-earth yttrium atoms together tighter than any previous material, and can even stabilize highly volatile charged complexes.

Metallic compounds that incorporate multiple hydrogen atoms, or polyhydrides, into their frameworks are useful to chemists because they provide some of the purest understandings of bonding and reactivity available. Previously, Hou’s team isolated an yttrium polyhydride containing a hydrogen ligand that simultaneously bonds to four metals[2]. This compound sparked remarkable chemical curiosity because of its structural novelty.

According to Hou, the trick to producing rare-earth polyhydrides is to surround them with large, cumbersome molecules that easily pack together to form crystals. The distinct structure of PNP ligands—two phosphorus atoms, linked together by a rigid aromatic–amino core that can bind to metals with a pincer-like grip—made this ligand a promising candidate for the researchers’ investigation.

By first substituting extra methyl units onto the aromatic backbone of PNP to increase its bulkiness, and then mixing the ligand with an yttrium alkyl precursor and hydrogen gas, the team synthesized pale yellow crystals of a new yttrium polyhydride complex. X-ray structural analysis revealed that three yttrium atoms, held in place by PNP ‘pincers’, were interlinked by a set of double- and triple-bridged hydrogen ligands (Fig. 1). This intricate network of bonds produced the shortest yttrium–yttrium distance ever recorded—an extraordinary packing density that may be critical for future hydrogen-storage applications.

The researchers found that an ammonium proton could remove a hydride from the complex without disrupting crystallization, yielding the first-ever cationic tri- and di-yttrium polyhydrides. The charged nature of these materials should impart potent chemical activity, attributes which Hou and his team are currently investigating. “Our results clearly demonstrate the vital importance of ligand-tuning in the isolation and characterization of rare earth polyhydrides, and should encourage further explorations in this burgeoning area,” he says.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Cheng, J., Shima, T. & Hou, Z. Rare-earth polyhydride complexes bearing bis(phosphinophenyl)amido pincer ligands. Angewandte Chemie International Edition 50, 1857–1860 (2011).

[2] Hou, Z., Nishiura, M. & Shima, T. Synthesis and reactions of polynuclear polyhydrido rare earth metal complexes containing “(C5Me4SiMe3)LnH2” units: A new frontier in rare earth metal hydride chemistry. European Journal of Inorganic Chemistry 18, 2535–2545 (2007).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6567
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>