Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the squeeze on rare earth metals

18.04.2011
‘Pincer’ molecules trap reactive rare earth elements into previously unseen hydrogen-infused structures

Rare-earth metals are a series of elements that represent one of the final frontiers of chemical exploration. The vigorous reactivity of these substances, however, has made it difficult for researchers to transform them into stable materials with well-defined structures. But when they succeed, the payoff can be enormous—rare-earth compounds have important applications in areas ranging from catalysis to clean energy.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have discovered a new way to isolate rare-earth metals as hydrogen-infused crystals by using wedge-shaped bis(phosphinophenyl)amido (PNP) ligands to ‘pinch’ them in place[1]. These ligands squeeze rare-earth yttrium atoms together tighter than any previous material, and can even stabilize highly volatile charged complexes.

Metallic compounds that incorporate multiple hydrogen atoms, or polyhydrides, into their frameworks are useful to chemists because they provide some of the purest understandings of bonding and reactivity available. Previously, Hou’s team isolated an yttrium polyhydride containing a hydrogen ligand that simultaneously bonds to four metals[2]. This compound sparked remarkable chemical curiosity because of its structural novelty.

According to Hou, the trick to producing rare-earth polyhydrides is to surround them with large, cumbersome molecules that easily pack together to form crystals. The distinct structure of PNP ligands—two phosphorus atoms, linked together by a rigid aromatic–amino core that can bind to metals with a pincer-like grip—made this ligand a promising candidate for the researchers’ investigation.

By first substituting extra methyl units onto the aromatic backbone of PNP to increase its bulkiness, and then mixing the ligand with an yttrium alkyl precursor and hydrogen gas, the team synthesized pale yellow crystals of a new yttrium polyhydride complex. X-ray structural analysis revealed that three yttrium atoms, held in place by PNP ‘pincers’, were interlinked by a set of double- and triple-bridged hydrogen ligands (Fig. 1). This intricate network of bonds produced the shortest yttrium–yttrium distance ever recorded—an extraordinary packing density that may be critical for future hydrogen-storage applications.

The researchers found that an ammonium proton could remove a hydride from the complex without disrupting crystallization, yielding the first-ever cationic tri- and di-yttrium polyhydrides. The charged nature of these materials should impart potent chemical activity, attributes which Hou and his team are currently investigating. “Our results clearly demonstrate the vital importance of ligand-tuning in the isolation and characterization of rare earth polyhydrides, and should encourage further explorations in this burgeoning area,” he says.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Cheng, J., Shima, T. & Hou, Z. Rare-earth polyhydride complexes bearing bis(phosphinophenyl)amido pincer ligands. Angewandte Chemie International Edition 50, 1857–1860 (2011).

[2] Hou, Z., Nishiura, M. & Shima, T. Synthesis and reactions of polynuclear polyhydrido rare earth metal complexes containing “(C5Me4SiMe3)LnH2” units: A new frontier in rare earth metal hydride chemistry. European Journal of Inorganic Chemistry 18, 2535–2545 (2007).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6567
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>