Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting MicroRNAs on the Stem Cell Map

11.08.2008
Short snippets of RNA called microRNAs help to keep embryonic stem cells in their stem cell state. Researchers now have discovered the gene circuitry that controls microRNAs in embryonic stem cells. Mapping the control circuitry of stem cells reveals how they maintain themselves or decide to differentiate, providing key clues for regenerative medicine and reprogramming of adult cells to a stem cell state. These maps also aid our understanding of human development and diseases such as cancer.

Embryonic stem cells are always facing a choice—either to self-renew or begin morphing into another type of cell altogether.

It’s a tricky choice, governed by complex gene regulatory circuitry driven by a handful of key regulators known as “master transcription factors,” proteins that switch gene expression on or off.

In the past few years, scientists in the lab of Whitehead Member Richard Young and their colleagues have mapped out key parts of this regulatory circuitry, but the genes that produce the tiny snippets of RNA known as microRNAs have until now been a missing piece of the map. Since microRNAs are a second set of regulators that help to instruct stem cells whether to stay in that state, they play key roles in development.

Young and colleagues have now discovered how microRNAs fit into the map of embryonic stem cell circuitry. With this map, the scientists have moved one step closer to understanding how adult cells can be reprogrammed to an embryonic state and then to other types of cells, and to understanding the role of microRNAs in cancer and other diseases.

“By understanding how master transcription factors turn microRNAs on and off, we now see how these two groups of gene regulators work together to control the state of the cell,” says Young, senior author on the study reported in the August 8 issue of Cell. “MicroRNAs are a special class of molecules because they not only contribute to cellular control but they play important roles in disease states such as cancer.”

Previous studies had shown that the microRNA machinery is important in maintaining embryonic stem cells in their embryonic state, but offered only partial views of how microRNA genes fit in with the overall gene regulation circuitry. To do so required mapping the sites in the genome from which microRNA genes start, explains Stuart Levine, co-lead author on the paper and postdoctoral scientist in Young’s lab.

“Knowing where genes start is essential to understanding their control,” says Levine. “Based on our knowledge of microRNA gene start sites we were able to discover how these genes are controlled by the master transcription factors.”

The researchers first created genome-wide maps of human and mouse embryonic stem cells that pinpoint where transcription factors bind to DNA and launch gene expression. This pinpointed where four master transcription factors (known as Oct4, Sox2, Nanog and Tcf3) were occupying sites where microRNA genes start to be transcribed. They found that the four core transcription factors are interacting with two key sets of microRNA genes. One set of microRNA genes is actively expressed in embryonic stem cells. The other set is silenced in those cells by other gene regulatory proteins known as Polycomb proteins. These proteins repress genes that are key for later development, a role previously described by Young lab researchers and their colleagues.

“We now have a list of what microRNAs are important in embryonic stem cells,” says Alex Marson, co-lead author on the paper and an MD/PhD student in the Young lab. “This gives us clues of which microRNAs you might want to target to direct an embryonic stem cell into another type of cell. For example, you might be able to harness a microRNA to help drive an embryonic stem cell to become a neuron, aiding with neurodegenerative disease or spinal cord injury.”

Moreover, the results give scientists a better platform for analyzing microRNA gene expression in cancer and other diseases. “We and others are finding that the overall gene circuitry for embryonic stem cells and cancer cells is very similar,” notes Marson. “Now that we have connected the circuitry to microRNAs, we can begin to compare microRNAs that are regulated in embryonic stem cells to those in cancer cells.”

The work was supported by the National Institutes of Health.

Richard Young’s primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full citation:
Cell, August 8, 2008 134(5)
“Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells”

Alexander Marson (1,2,5), Stuart S. Levine (1,5), Megan F. Cole (1,2), Garrett M. Frampton (1,2), Tobias Brambrink (1), Sarah Johnstone (1,2), Matthew G. Guenther (1), Wendy K. Johnston (1,3), Marius Wernig (1), Jamie Newman (1, 2), J.Mauro Calabrese (2, 4), Lucas M. Dennis (1,2), Thomas L. Volkert (1), Sumeet Gupta (1), Jennifer Love (1), Nancy Hannett (1), Phillip A. Sharp (2,4), David P. Bartel (1, 2, 3), Rudolf Jaenisch (1,2), and Richard A. Young (1,2)

1 Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
2 Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA
02139, USA
3 Howard Hughes Medical Institute
4 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA

5 These authors contributed equally to this work

Cristin Carr | Newswise Science News
Further information:
http://www.wi.mit.edu/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>