Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting light-harvesters on the spot: how photosynthetic proteins get into the membrane

19.10.2011
RUB biologists publish new model for protein transport in plant cells / Journal of Biological Chemistry: how photosynthetic proteins get into the membrane

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schünemann (RUB working group on the molecular biology of plant organelles) has demonstrated for the first time that a membrane protein interacts with a single soluble protein to anchor the subunits of the light-harvesting complexes in the membrane. The researchers propose a new model that explains the integration into the membrane through the formation of a pore.


New transport model: Proteins of the light-harvesting complexes (green) have to be installed in special membranes inside the chloroplasts (thylakoid membranes). Soluble proteins (43, 54) transport them there. The membrane protein Alb3 forms a pore through interaction with one of the soluble proteins (43), through which the light-harvesting complex proteins are inserted into the membrane (Figure published in the Journal of Biological Chemistry) Figure: The American Society for Biochemistry and Molecular Biology

Light harvesting

Photosynthesis occurs in special areas of the plant cells, the chloroplasts, whereby the energy-converting process takes place in specific protein complexes (photosystems). To capture the light energy and efficiently transmit it to the photosystems, light-harvesting complexes are required which work like antenna. “The proteins of the light-harvesting complexes are the most abundant membrane proteins on Earth” says Dr. Beatrix Dünschede of the RUB. “There is a special transport mechanism that conveys them into the chloroplasts and incorporates them into the photosynthetic membrane”. Exactly how the various transport proteins interact with each other had, up to now, been unclear.

Interaction between only two proteins

Several soluble proteins and the membrane protein Alb3 that channels the proteins of the light-harvesting complexes into the membrane are involved in the transport. Bochum’s biologists examined intact, isolated plant cells and found that, for this purpose, Alb3 interacts with only a single soluble transport protein (cpSRP43). They confirmed this result in a second experiment with artificial membrane systems. “In a further experiment, we identified the region in Alb3 to which the soluble protein cpSRP43 binds” explains the RUB biologist Dr. Thomas Bals. “It turned out that the binding site is partly within the membrane and thus cannot be freely accessible for cpSRP43.”

Through the pore into the membrane

Schünemann’s team explains the data with a new model. The soluble transport proteins bind the proteins of the light-harvesting complexes and transport them to the membrane. There, the soluble transport protein cpSRP43 interacts with the membrane protein Alb3, which then forms a pore. The proteins of the light-harvesting complexes get into the pore, and from there they are released laterally into the membrane. “There are proteins in other organisms which are very similar to Alb3 and apparently also form pores” says Dünschede. “This supports our model. We are now planning new experiments in order to recreate the entire transport path in an artificial system.”

Bibliographic record

B. Dünschede, T. Bals, S. Funke, D. Schünemann (2011) Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3, Journal of Biological Chemistry, 286, 35187-35195, doi: 10.1074/jbc.M111.250746

Further information

Working group on the molecular biology of plant organelles, Department for Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum

Dr. Beatrix Dünschede, Tel. 0234/32-28467
beatrix.duenschede@rub.de
Dr. Thomas Bals, Tel. 0234/32-28467
thomas.bals@rub.de
Prof. Dr. Danja Schünemann, Tel: 0234/32-24293
danja.schuenemann@rub.de
Click for more
Homepage of the working group:
http://homepage.ruhr-uni-bochum.de/Danja.Schuenemann/Seiten_dt/index.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://homepage.ruhr-uni-bochum.de/Danja.Schuenemann/Seiten_dt/index.html

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>