Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the boundaries of stem cells

08.05.2014

New technique expands number of functional cord blood stem cells for transplantation

Adults suffering from diseases such as leukemia, lymphoma, and other blood-related disorders may benefit from life-saving treatment commonly used in pediatric patients. Researchers at the Icahn School of Medicine at Mount Sinai have identified a new technique that causes cord blood (CB) stems cells to generate in greater numbers making them more useful in adult transplantation.

The study, published in the May issue of The Journal of Clinical Investigation, looked at ways to expand the number of hematopoietic stem cells (HSC) in the laboratory required to replenish and renew blood cells. Cord blood stem cells have the ability to rapidly divide in the presence of combinations of growth factors but they often lose their marrow-repopulating potential following cell division. Researchers looked at ways to overcome this limitation by inducing a genetic program by which a stem cell retains its full functional properties after dividing in the laboratory.

"Cord blood stem cells have always posed limitations for adult patients because of the small number of stem cells present in a single collection," said Pratima Chaurasia, PhD, Assistant Professor of Medicine at the Tisch Cancer Institute at Mount Sinai. "These limitations have resulted in a high rate of graft failure and delayed engraftment in adult patients."

Researchers used a technique called epigenetic reprogramming which reshaped cell DNA by treating cells with a combination of histone deacetylase inhibitors (HDACI) and valproic acid. The VPA-treated cells produced a greater number of repopulating cells, and established multilineage hematopoiesis in primary, secondary and tertiary immune-deficient mice.

"We're excited by these results. The findings have important implications for patients battling blood cancers and the difference between success and failure of life saving stem cell transplants." added Ronald Hoffman, MD, Albert A. and Vera G. List Professor of Medicine, Director of Myeloproliferative Disorders Research Program at the Tisch Cancer Institute at Mount Sinai.

###

This study was supported by a New York Stem Cell Science grant from the Empire State Stem Cell Board, whose mission is to foster a strong stem cell research community in New York State and to accelerate the growth of scientific knowledge about stem cell biology and the development of therapies and diagnostic methods under the highest ethical, scientific, and medical standards for the purpose of alleviating disease and improving human health.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community-based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12-minority-owned free-standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Lucia Lee | Eurek Alert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>