Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the boundaries of stem cells

08.05.2014

New technique expands number of functional cord blood stem cells for transplantation

Adults suffering from diseases such as leukemia, lymphoma, and other blood-related disorders may benefit from life-saving treatment commonly used in pediatric patients. Researchers at the Icahn School of Medicine at Mount Sinai have identified a new technique that causes cord blood (CB) stems cells to generate in greater numbers making them more useful in adult transplantation.

The study, published in the May issue of The Journal of Clinical Investigation, looked at ways to expand the number of hematopoietic stem cells (HSC) in the laboratory required to replenish and renew blood cells. Cord blood stem cells have the ability to rapidly divide in the presence of combinations of growth factors but they often lose their marrow-repopulating potential following cell division. Researchers looked at ways to overcome this limitation by inducing a genetic program by which a stem cell retains its full functional properties after dividing in the laboratory.

"Cord blood stem cells have always posed limitations for adult patients because of the small number of stem cells present in a single collection," said Pratima Chaurasia, PhD, Assistant Professor of Medicine at the Tisch Cancer Institute at Mount Sinai. "These limitations have resulted in a high rate of graft failure and delayed engraftment in adult patients."

Researchers used a technique called epigenetic reprogramming which reshaped cell DNA by treating cells with a combination of histone deacetylase inhibitors (HDACI) and valproic acid. The VPA-treated cells produced a greater number of repopulating cells, and established multilineage hematopoiesis in primary, secondary and tertiary immune-deficient mice.

"We're excited by these results. The findings have important implications for patients battling blood cancers and the difference between success and failure of life saving stem cell transplants." added Ronald Hoffman, MD, Albert A. and Vera G. List Professor of Medicine, Director of Myeloproliferative Disorders Research Program at the Tisch Cancer Institute at Mount Sinai.

###

This study was supported by a New York Stem Cell Science grant from the Empire State Stem Cell Board, whose mission is to foster a strong stem cell research community in New York State and to accelerate the growth of scientific knowledge about stem cell biology and the development of therapies and diagnostic methods under the highest ethical, scientific, and medical standards for the purpose of alleviating disease and improving human health.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services—from community-based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12-minority-owned free-standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

Lucia Lee | Eurek Alert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>