Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing cells towards a higher pluripotency state

24.06.2014

Stem cells have the unique ability to become any type of cell in the body.

Given this, the possibility that they can be cultured and engineered in the laboratory makes them an attractive option for regenerative medicine.

However, some conditions that are commonly used for culturing human stem cells have the potential to introduce contaminants, thus rendering the cells unusable for clinical use. These conditions cannot be avoided, however, as they help maintain the pluripotency of the stem cells.

In a study published in Scientific Reports, a group from the RIKEN Center for Life Science Technologies in Japan has gained new insight into the role of CCL2, a chemokine known to be involved in the immune response, in the enhancement of stem cell pluripotency.

In the study, the researchers replaced basic fibroblast growth factor (bFGF), a critical component of human stem cell culture, with CCL2 and studied its effect. The work showed that CCL2 used as a replacement for bFGF activated the JAK/STAT pathway, which is known to be involved in the immune response and maintenance of mouse pluripotent stem cells.

In addition, the cells cultured with CCL2 demonstrated a higher tendency of colony attachment, high efficiency of cellular differentiation, and hints of X chromosome reactivation in female cells, all markers of pluripotency.

To understand the global effects of CCL2, the researchers compared the transcriptome of stem cells cultured with CCL2 and those with bFGF. They found that stem cells cultured with CCL2 had higher expression of genes related to the hypoxic response, such as HIF2A (EPAS1).

The study opens up avenues for further exploring the relationship between cellular stress, such as hypoxia, and the enhancement of pluripotency in cells. Yuki Hasegawa of CLST, who led the study, says, "Among the differentially expressed genes, we found out that the most significantly differentially expressed ones were those related to hypoxic responses, and hypoxia is known to be important in the progression of tumors and the maintenance of pluripotency.

These results could potentially contribute to greater consistency of human induced pluripotent stem cells (iPSCs), which are important both for regenerative medicine and for research into diseases processes."

As a way to apply CCL2 towards the culturing of human iPSCs with more consistent quality, the researchers developed dishes coated with CCL2 and LIF protein beads. This allowed stem cells to be cultured in a feeder-free condition, preventing the risk that viruses or other contaminants could be transmitted to the stem cells.

While the exact mechanisms of how CCL2 enhances pluripotency has yet to be elucidated, this work highlights the usefulness of CCL2 in stem cell culture.

Jens Wilkinson | Eurek Alert!
Further information:
http://www.riken.jp

Further reports about: CCL2 RIKEN conditions contaminants genes hypoxic pluripotency pluripotent regenerative

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>