Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Pure” Human Blood Stem-Cell Discovery Opens Door to Expanding Cells for More Clinical Use

11.07.2011
For the first time since stem cells were discovered here 50 years ago, scientists have isolated a human blood stem cell in its purest form – as a single stem cell capable of regenerating the entire blood system.

This breakthrough opens the door to harnessing the power of these life-producing cells to treat cancer and other debilitating diseases more effectively.

The research is published today in Science (http://www.sciencemag.org/lookup/doi/10.1126/science.1201219).

“This discovery means we now have an increasingly detailed road map of the human blood development system including the much sought after stem cell,” says principal investigator John Dick, who holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at the McEwen Centre for Regenerative Medicine and the Ontario Cancer Institute, University Health Network (UHN).

“We have isolated a single cell that makes all arms of the blood system, which is key to maximizing the potential power of stem cells for use in more clinical applications. Stem cells are so rare that this is a little like finding a needle in a haystack.”

Dr. Dick, who pioneered the field of cancer stem cells with previous discoveries in human leukemia and colon cancer, also developed a way to replicate the entire human leukemia disease process using genetically engineered mice. As well as being a Senior Scientist at UHN’s Princess Margaret and Toronto General Hospitals, he is a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

Dr. Dick works out of UHN’s Ontario Cancer Institute (OCI) – the venerable institution where stem-cell science began in 1961 with the original discovery of Drs. James Till and Ernest McCulloch – and McEwen Centre for Regenerative Medicine with the next generation of stem-cell scientists focused on developing better and more effective treatments for heart disease, diabetes, respiratory disease and spinal cord injury.

The 1961 Till and McCulloch discovery quickly led to using stem cells for bone marrow transplantation in leukemia patients, the most successful clinical application so far in what is now known as regenerative medicine and a therapy that is used to treat thousands of patients annually around the world.

“Ever since stem-cell science began,” says Dr. Dick, “scientists have been searching for the elusive mother lode – the single, pure stem cell that could be controlled and expanded in culture prior to transplantation into patients. Recently scientists have begun to harness the stem cells found in the umbilical cord blood; however, for many patients a single donor sample is not large enough to use. These new findings are a major step to generate sufficient quantities of stem cells to enable greater clinical use and thus move closer to realizing the promise of regenerative medicine for patients.”

Along the way, scientists have indeed mapped many vital signposts regarding stem-cell subsets and specialization. Last year, Dr Dick’s team reported isolating the more specialized progenitor cells that lie downstream of the stem cell. The discovery published today was enabled by hi-tech flow cytometry technology: a process that rapidly sorts, sifts and purifies millions of blood cells into meaningful bins for scientific analysis. Now, stem-cell scientists can start mapping the molecular switches that guide how “normal” stem cells behave and endure, and also characterize the core properties that distinguish them from all other blood cell types.

This discovery is the one Dr. Dick has personally been seeking ever since 1988 when he developed the first means of studying human blood stem cells by transplanting them into immune-deficient mice, research that was also published in Science. “Back then, our goal was to define single human stem cells. With advances made in technology, twenty-three years later, we have.”

The research was funded by the Canadian Institutes for Health Research (CIHR), the Canadian Cancer Society, the Terry Fox Foundation, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Cancer Research, a Canada Research Chair, OCI’s Campbell Family Institute for Cancer Research, the Ontario Ministry of Health and Long-Term Care, as well as student grants from CIHR, the Swiss National Science Foundation and Roche. Dr. Dick’s research is also supported by the McEwen Centre for Regenerative Medicine and The Princess Margaret Hospital Foundation.

About University Health Network
University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals, and Toronto Rehabilitation Institute.. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, genomic medicine and rehabilitation medicine. University Health Network is a research hospital affiliated with the University of Toronto. Visit www.uhn.ca to learn more. For more information about the McEwen Centre for Regenerative Medicine and the stem-cell research hub in Toronto, go to www.joinstemcellcity.com
Media contact:
Jane Finlayson, Public Affairs, (416) 946-2846 jane.finlayson@uhn.on.ca

Jane Finlayson | Newswise Science News
Further information:
http://www.uhn.on.ca

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>