Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientists reveal how bacteria build homes inside healthy cells

21.12.2011
Bacteria are able to build camouflaged homes for themselves inside healthy cells - and cause disease - by manipulating a natural cellular process.

Purdue University biologists led a team that revealed how a pair of proteins from the bacteria Legionella pneumophila, which causes Legionnaires disease, alters a host protein in order to divert raw materials within the cell for use in building and disguising a large structure that houses the bacteria as it replicates.

Zhao-Qing Luo, the associate professor of biological sciences who headed the study, said the modification of the host protein creates a dam, blocking proteins that would be used as bricks in cellular construction from reaching their destination. The protein "bricks" are then diverted and incorporated into a bacterial structure called a vacuole that houses bacteria as it replicates within the cell. Because the vacuole contains materials natural to the cell, it goes unrecognized as a foreign structure.

"The bacterial proteins use the cellular membrane proteins to build their house, which is sort of like a balloon," Luo said. "It needs to stretch and grow bigger as more bacterial replication occurs. The membrane material helps the vacuole be more rubbery and stretchy, and it also camouflages the structure. The bacteria is stealing material from the cell to build their own house and then disguising it so it blends in with the neighborhood."

The method by which the bacteria achieve this theft is what was most surprising to Luo.

The bacterial proteins, named AnkX and Lem3, modify the host protein through a biochemical process called phosphorylcholination that is used by healthy cells to regulate immune response. Phosphorylcholination is known to happen in many organisms and involves adding a small chemical group, called the phosphorylcholine moiety, to a target molecule, he said.

The team discovered that AnkX adds the phosphorylcholine moiety to a host protein involved in moving proteins from the cell's endoplasmic reticulum to their cellular destinations. The modification effectively shuts down this process and creates a dam that blocks the proteins from reaching their destination.

The bacterial protein Lem3 is positioned outside the vacuole and reverses the modification of the host protein to ensure that the protein "bricks" are free to be used in creation of the bacterial structure.

This study was the first to identify proteins that directly add and remove the phosphorylcholine moiety, Luo said.

"We were surprised to find that the bacterial proteins use the phosphorylcholination process and to discover that this process is reversible," he said. "This is evidence of a new way signals are relayed within cells, and we are eager to investigate it."

The team also found that the phosphorylcholination reaction is carried out at a specific site on the protein called the Fic domain. Previous studies had shown this site induced a different reaction called AMPylation.

It is rare for a domain to catalyze more than one reaction, and it was thought this site's only responsibility was to transfer the chemical group necessary for AMPylation, Luo said.

"Revealing that this domain has dual roles is very important to identify or screen for compounds to inhibit its activity and fight disease," he said. "This domain has a much broader involvement in biochemical reactions than we thought and may be a promising target for effective treatments."

During infection bacteria deliver hundreds of proteins into healthy cells that alter cellular processes to turn the hostile environment into one hospitable to bacterial replication, but the specific roles of only about 20 proteins are known, Luo said.

"In order to pinpoint proteins that would be good targets for new antibiotics, we need to determine their roles and importance to the success of infection," he said. "We need to understand at the biochemical level exactly what these proteins do and how they take over natural cellular processes. Then we can work on finding ways to block these activities, stop the infection and save lives."

A paper detailing their National Institutes of Health-funded work is published in the current issue of the Proceedings of National Academy of Sciences. In addition to Luo, Purdue graduate student Yunhao Tan and Randy Ronald of Indiana University co-authored the paper.

Luo next plans to use the bacterial proteins as a tool to learn more about the complex cellular processes controlled by phosphorylcholination and to determine the biochemical processes role in cell signaling.

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Source: Zhao-Wing Luo, 765-496-6697, luoz@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>