Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pump! And you will grow

28.07.2014

Phosphate transport from fungi to plant roots requires a proton pump

Phosphorous (P) is a component of DNA and plays an important role in energy metabolism; therefore it is essential for all organisms. Plants are able to take it up from the soil in the form of salts, namely phosphates.


Arbuscular mycorrhizal structures in a root stained in blue and magnified with a light microscope.

Max Planck Institute of Molecular Plant Physiology

But in many soils phosphate is already depleted and the world’s phosphate resources, which can be used to produce fertilizer, are declining. Nevertheless, crop plants need an optimal P-supply to gain high yields. To overcome this problem, a special community of plants and fungi could become more important in the future.

About 80 % of all land plants live in a kind of marriage with arbuscular mycorrhizal fungi. This relationship secures the plants’ phosphate nutrition while the fungi are rewarded with sugars. Scientists around Franziska Krajinski from the Max Planck Institute of Molecular Plant Physiology recently discovered that a special proton pump facilitates the transport of fungal phosphate into the plant. (Plant Cell, DOI: 10.1105/tpc.113.120436).

It is all about give-and-take

This relationship, or better symbiosis, is an ancient story of success; arbuscular mycorrhizal fungi (AM fungi) already supported plants in the initial colonization of land over 400 million years ago. In contrast to other fungi, like the yellow boletus, AM fungi are not visible above-ground. They enter the roots of plants with their hyphae and build treelike structures called arbuscules. This name derives from the Latin phrase “arbusculus”, meaning “little tree”.

When one partner lives inside the other, this is called an endosymbiosis and, as in all well working relationships, this symbiosis positively affects both partners. The plant receives phosphate from the fungus in exchange for sugars.

Nothing works without energy

The scientists around Franziska Krajinski from the MPI-MP are interested in the transport processes between the AM fungus Rhizophagus irregularis and the barrel clover Medicago truncatula. Although AM fungi live inside the root cells of their symbiotic partners, both are always separated from each other by two membranes – the fungal membrane and the so-called periarbuscular membrane, on the plant side.

Phosphate has to cross those barriers on its way from the fungus to the root cell. In the periarbuscular membrane, this is facilitated by certain proteins, that transport their cargo from the fungus to the plant like little trucks and just like the real trucks they need energy to do their job. “But, proteins cannot stop at a petrol station to refuel with energy. They have to use other resources”, Daniela Sieh comments on the current research.

“We wanted to unravel the energy source of phosphate transport. Luckily, we could refer to older studies, where we identified a gene in barrel clover, which encodes a proton pump”, Prof. Franziska Krajinski adds.

Just like the transport proteins mentioned above, this proton pump is localized in the periarbuscular membrane. There, it transports protons - small positively charged hydrogen ions – into the space between the periarbuscular and the fungal membrane. This leads to a higher concentration of protons on the outside of the plant cell than on the inside, a so-called proton gradient. The protons on the outside serve as energy source for the transport of phosphate into the plant cell.

No proton pump – no phosphate

To prove that this proton pump is required to transport phosphate, the scientists generated Medicago truncatula mutants that have a non-functional version of the respective gene. Thus, the proton pump cannot be synthesized correctly. The symbiotic phosphate uptake and the growth rate of those mutants were compared to wild type plants. Roots of both plants - mutant and wild type - were equally colonized by Rhizophagus irregularis. Nevertheless, under phosphate deprivation the wild type plants grew better than the mutants due to the extra P-supply from the fungus

The scientists also compared the phosphate transport to different parts of the plants. Wild type plants incorporated fungal phosphate in roots and shoots, as usual for mycorrhizal symbiosis. But, this pattern of phosphate incorporation could not be observed for the mutants. “We discovered that the proton pump is essential for phosphate transport”, Franziska Krajinski says, “The mutants could not grow on phosphate depleted soil, although they were colonized by the fungus”. Considering the declining phosphate resources, it is crucial to build a better understanding of symbiotic processes. The use of mycorrhizal products as replacement for mineral fertilizers is restricted to organic farming at the moment. Though, this will probably get increasingly important for the nutrition of crop plants and our own nutrition as well in the future.

KD/URS

Contact

Prof. Dr. Franziska Krajinski
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8360
Krajinski@mpimp-golm.mpg.de

Dr. Kathleen Dahncke
Press and Public Relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de

Weitere Informationen:

http://www.mpimp-golm.mpg.de/8316/2krajinski Prof. Dr. Krajinski's Website
http://www.plantcell.org/content/early/2014/04/29/tpc.113.120436.abstract?sid=0e... Orignial publication

Ursula Ross-Stitt | Max-Planck-Institut

Further reports about: Max-Planck-Institut Molecular Physiology fungal fungi fungus mutants mycorrhizal phosphate proteins protons pump symbiosis symbiotic

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>