Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pump! And you will grow

28.07.2014

Phosphate transport from fungi to plant roots requires a proton pump

Phosphorous (P) is a component of DNA and plays an important role in energy metabolism; therefore it is essential for all organisms. Plants are able to take it up from the soil in the form of salts, namely phosphates.


Arbuscular mycorrhizal structures in a root stained in blue and magnified with a light microscope.

Max Planck Institute of Molecular Plant Physiology

But in many soils phosphate is already depleted and the world’s phosphate resources, which can be used to produce fertilizer, are declining. Nevertheless, crop plants need an optimal P-supply to gain high yields. To overcome this problem, a special community of plants and fungi could become more important in the future.

About 80 % of all land plants live in a kind of marriage with arbuscular mycorrhizal fungi. This relationship secures the plants’ phosphate nutrition while the fungi are rewarded with sugars. Scientists around Franziska Krajinski from the Max Planck Institute of Molecular Plant Physiology recently discovered that a special proton pump facilitates the transport of fungal phosphate into the plant. (Plant Cell, DOI: 10.1105/tpc.113.120436).

It is all about give-and-take

This relationship, or better symbiosis, is an ancient story of success; arbuscular mycorrhizal fungi (AM fungi) already supported plants in the initial colonization of land over 400 million years ago. In contrast to other fungi, like the yellow boletus, AM fungi are not visible above-ground. They enter the roots of plants with their hyphae and build treelike structures called arbuscules. This name derives from the Latin phrase “arbusculus”, meaning “little tree”.

When one partner lives inside the other, this is called an endosymbiosis and, as in all well working relationships, this symbiosis positively affects both partners. The plant receives phosphate from the fungus in exchange for sugars.

Nothing works without energy

The scientists around Franziska Krajinski from the MPI-MP are interested in the transport processes between the AM fungus Rhizophagus irregularis and the barrel clover Medicago truncatula. Although AM fungi live inside the root cells of their symbiotic partners, both are always separated from each other by two membranes – the fungal membrane and the so-called periarbuscular membrane, on the plant side.

Phosphate has to cross those barriers on its way from the fungus to the root cell. In the periarbuscular membrane, this is facilitated by certain proteins, that transport their cargo from the fungus to the plant like little trucks and just like the real trucks they need energy to do their job. “But, proteins cannot stop at a petrol station to refuel with energy. They have to use other resources”, Daniela Sieh comments on the current research.

“We wanted to unravel the energy source of phosphate transport. Luckily, we could refer to older studies, where we identified a gene in barrel clover, which encodes a proton pump”, Prof. Franziska Krajinski adds.

Just like the transport proteins mentioned above, this proton pump is localized in the periarbuscular membrane. There, it transports protons - small positively charged hydrogen ions – into the space between the periarbuscular and the fungal membrane. This leads to a higher concentration of protons on the outside of the plant cell than on the inside, a so-called proton gradient. The protons on the outside serve as energy source for the transport of phosphate into the plant cell.

No proton pump – no phosphate

To prove that this proton pump is required to transport phosphate, the scientists generated Medicago truncatula mutants that have a non-functional version of the respective gene. Thus, the proton pump cannot be synthesized correctly. The symbiotic phosphate uptake and the growth rate of those mutants were compared to wild type plants. Roots of both plants - mutant and wild type - were equally colonized by Rhizophagus irregularis. Nevertheless, under phosphate deprivation the wild type plants grew better than the mutants due to the extra P-supply from the fungus

The scientists also compared the phosphate transport to different parts of the plants. Wild type plants incorporated fungal phosphate in roots and shoots, as usual for mycorrhizal symbiosis. But, this pattern of phosphate incorporation could not be observed for the mutants. “We discovered that the proton pump is essential for phosphate transport”, Franziska Krajinski says, “The mutants could not grow on phosphate depleted soil, although they were colonized by the fungus”. Considering the declining phosphate resources, it is crucial to build a better understanding of symbiotic processes. The use of mycorrhizal products as replacement for mineral fertilizers is restricted to organic farming at the moment. Though, this will probably get increasingly important for the nutrition of crop plants and our own nutrition as well in the future.

KD/URS

Contact

Prof. Dr. Franziska Krajinski
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8360
Krajinski@mpimp-golm.mpg.de

Dr. Kathleen Dahncke
Press and Public Relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de

Weitere Informationen:

http://www.mpimp-golm.mpg.de/8316/2krajinski Prof. Dr. Krajinski's Website
http://www.plantcell.org/content/early/2014/04/29/tpc.113.120436.abstract?sid=0e... Orignial publication

Ursula Ross-Stitt | Max-Planck-Institut

Further reports about: Max-Planck-Institut Molecular Physiology fungal fungi fungus mutants mycorrhizal phosphate proteins protons pump symbiosis symbiotic

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Imaging test may identify biomarker of Alzheimer's disease

27.05.2015 | Health and Medicine

Experiments in the realm of the impossible

27.05.2015 | Physics and Astronomy

Over 70% of glacier volume in Everest region could be lost by 2100

27.05.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>