Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pump! And you will grow

28.07.2014

Phosphate transport from fungi to plant roots requires a proton pump

Phosphorous (P) is a component of DNA and plays an important role in energy metabolism; therefore it is essential for all organisms. Plants are able to take it up from the soil in the form of salts, namely phosphates.


Arbuscular mycorrhizal structures in a root stained in blue and magnified with a light microscope.

Max Planck Institute of Molecular Plant Physiology

But in many soils phosphate is already depleted and the world’s phosphate resources, which can be used to produce fertilizer, are declining. Nevertheless, crop plants need an optimal P-supply to gain high yields. To overcome this problem, a special community of plants and fungi could become more important in the future.

About 80 % of all land plants live in a kind of marriage with arbuscular mycorrhizal fungi. This relationship secures the plants’ phosphate nutrition while the fungi are rewarded with sugars. Scientists around Franziska Krajinski from the Max Planck Institute of Molecular Plant Physiology recently discovered that a special proton pump facilitates the transport of fungal phosphate into the plant. (Plant Cell, DOI: 10.1105/tpc.113.120436).

It is all about give-and-take

This relationship, or better symbiosis, is an ancient story of success; arbuscular mycorrhizal fungi (AM fungi) already supported plants in the initial colonization of land over 400 million years ago. In contrast to other fungi, like the yellow boletus, AM fungi are not visible above-ground. They enter the roots of plants with their hyphae and build treelike structures called arbuscules. This name derives from the Latin phrase “arbusculus”, meaning “little tree”.

When one partner lives inside the other, this is called an endosymbiosis and, as in all well working relationships, this symbiosis positively affects both partners. The plant receives phosphate from the fungus in exchange for sugars.

Nothing works without energy

The scientists around Franziska Krajinski from the MPI-MP are interested in the transport processes between the AM fungus Rhizophagus irregularis and the barrel clover Medicago truncatula. Although AM fungi live inside the root cells of their symbiotic partners, both are always separated from each other by two membranes – the fungal membrane and the so-called periarbuscular membrane, on the plant side.

Phosphate has to cross those barriers on its way from the fungus to the root cell. In the periarbuscular membrane, this is facilitated by certain proteins, that transport their cargo from the fungus to the plant like little trucks and just like the real trucks they need energy to do their job. “But, proteins cannot stop at a petrol station to refuel with energy. They have to use other resources”, Daniela Sieh comments on the current research.

“We wanted to unravel the energy source of phosphate transport. Luckily, we could refer to older studies, where we identified a gene in barrel clover, which encodes a proton pump”, Prof. Franziska Krajinski adds.

Just like the transport proteins mentioned above, this proton pump is localized in the periarbuscular membrane. There, it transports protons - small positively charged hydrogen ions – into the space between the periarbuscular and the fungal membrane. This leads to a higher concentration of protons on the outside of the plant cell than on the inside, a so-called proton gradient. The protons on the outside serve as energy source for the transport of phosphate into the plant cell.

No proton pump – no phosphate

To prove that this proton pump is required to transport phosphate, the scientists generated Medicago truncatula mutants that have a non-functional version of the respective gene. Thus, the proton pump cannot be synthesized correctly. The symbiotic phosphate uptake and the growth rate of those mutants were compared to wild type plants. Roots of both plants - mutant and wild type - were equally colonized by Rhizophagus irregularis. Nevertheless, under phosphate deprivation the wild type plants grew better than the mutants due to the extra P-supply from the fungus

The scientists also compared the phosphate transport to different parts of the plants. Wild type plants incorporated fungal phosphate in roots and shoots, as usual for mycorrhizal symbiosis. But, this pattern of phosphate incorporation could not be observed for the mutants. “We discovered that the proton pump is essential for phosphate transport”, Franziska Krajinski says, “The mutants could not grow on phosphate depleted soil, although they were colonized by the fungus”. Considering the declining phosphate resources, it is crucial to build a better understanding of symbiotic processes. The use of mycorrhizal products as replacement for mineral fertilizers is restricted to organic farming at the moment. Though, this will probably get increasingly important for the nutrition of crop plants and our own nutrition as well in the future.

KD/URS

Contact

Prof. Dr. Franziska Krajinski
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8360
Krajinski@mpimp-golm.mpg.de

Dr. Kathleen Dahncke
Press and Public Relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de

Weitere Informationen:

http://www.mpimp-golm.mpg.de/8316/2krajinski Prof. Dr. Krajinski's Website
http://www.plantcell.org/content/early/2014/04/29/tpc.113.120436.abstract?sid=0e... Orignial publication

Ursula Ross-Stitt | Max-Planck-Institut

Further reports about: Max-Planck-Institut Molecular Physiology fungal fungi fungus mutants mycorrhizal phosphate proteins protons pump symbiosis symbiotic

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>