Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pump! And you will grow


Phosphate transport from fungi to plant roots requires a proton pump

Phosphorous (P) is a component of DNA and plays an important role in energy metabolism; therefore it is essential for all organisms. Plants are able to take it up from the soil in the form of salts, namely phosphates.

Arbuscular mycorrhizal structures in a root stained in blue and magnified with a light microscope.

Max Planck Institute of Molecular Plant Physiology

But in many soils phosphate is already depleted and the world’s phosphate resources, which can be used to produce fertilizer, are declining. Nevertheless, crop plants need an optimal P-supply to gain high yields. To overcome this problem, a special community of plants and fungi could become more important in the future.

About 80 % of all land plants live in a kind of marriage with arbuscular mycorrhizal fungi. This relationship secures the plants’ phosphate nutrition while the fungi are rewarded with sugars. Scientists around Franziska Krajinski from the Max Planck Institute of Molecular Plant Physiology recently discovered that a special proton pump facilitates the transport of fungal phosphate into the plant. (Plant Cell, DOI: 10.1105/tpc.113.120436).

It is all about give-and-take

This relationship, or better symbiosis, is an ancient story of success; arbuscular mycorrhizal fungi (AM fungi) already supported plants in the initial colonization of land over 400 million years ago. In contrast to other fungi, like the yellow boletus, AM fungi are not visible above-ground. They enter the roots of plants with their hyphae and build treelike structures called arbuscules. This name derives from the Latin phrase “arbusculus”, meaning “little tree”.

When one partner lives inside the other, this is called an endosymbiosis and, as in all well working relationships, this symbiosis positively affects both partners. The plant receives phosphate from the fungus in exchange for sugars.

Nothing works without energy

The scientists around Franziska Krajinski from the MPI-MP are interested in the transport processes between the AM fungus Rhizophagus irregularis and the barrel clover Medicago truncatula. Although AM fungi live inside the root cells of their symbiotic partners, both are always separated from each other by two membranes – the fungal membrane and the so-called periarbuscular membrane, on the plant side.

Phosphate has to cross those barriers on its way from the fungus to the root cell. In the periarbuscular membrane, this is facilitated by certain proteins, that transport their cargo from the fungus to the plant like little trucks and just like the real trucks they need energy to do their job. “But, proteins cannot stop at a petrol station to refuel with energy. They have to use other resources”, Daniela Sieh comments on the current research.

“We wanted to unravel the energy source of phosphate transport. Luckily, we could refer to older studies, where we identified a gene in barrel clover, which encodes a proton pump”, Prof. Franziska Krajinski adds.

Just like the transport proteins mentioned above, this proton pump is localized in the periarbuscular membrane. There, it transports protons - small positively charged hydrogen ions – into the space between the periarbuscular and the fungal membrane. This leads to a higher concentration of protons on the outside of the plant cell than on the inside, a so-called proton gradient. The protons on the outside serve as energy source for the transport of phosphate into the plant cell.

No proton pump – no phosphate

To prove that this proton pump is required to transport phosphate, the scientists generated Medicago truncatula mutants that have a non-functional version of the respective gene. Thus, the proton pump cannot be synthesized correctly. The symbiotic phosphate uptake and the growth rate of those mutants were compared to wild type plants. Roots of both plants - mutant and wild type - were equally colonized by Rhizophagus irregularis. Nevertheless, under phosphate deprivation the wild type plants grew better than the mutants due to the extra P-supply from the fungus

The scientists also compared the phosphate transport to different parts of the plants. Wild type plants incorporated fungal phosphate in roots and shoots, as usual for mycorrhizal symbiosis. But, this pattern of phosphate incorporation could not be observed for the mutants. “We discovered that the proton pump is essential for phosphate transport”, Franziska Krajinski says, “The mutants could not grow on phosphate depleted soil, although they were colonized by the fungus”. Considering the declining phosphate resources, it is crucial to build a better understanding of symbiotic processes. The use of mycorrhizal products as replacement for mineral fertilizers is restricted to organic farming at the moment. Though, this will probably get increasingly important for the nutrition of crop plants and our own nutrition as well in the future.



Prof. Dr. Franziska Krajinski
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8360

Dr. Kathleen Dahncke
Press and Public Relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275

Weitere Informationen: Prof. Dr. Krajinski's Website Orignial publication

Ursula Ross-Stitt | Max-Planck-Institut

Further reports about: Max-Planck-Institut Molecular Physiology fungal fungi fungus mutants mycorrhizal phosphate proteins protons pump symbiosis symbiotic

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>