Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Puget Sound's clingfish could inspire better medical devices, whale tags

05.05.2015

Scooting around in the shallow, coastal waters of Puget Sound is one of the world's best suction cups.

It's called the Northern clingfish, and its small, finger-sized body uses suction forces to hold up to 150 times its own body weight. These fish actually hold on better to rough surfaces than to smooth ones, putting to shame industrial suction devices that give way with the slightest uneven surface.


A Northern clingfish is shown in its natural environment.

Credit: Petra Ditsche, U of Washington

Researchers at the University of Washington's Friday Harbor Laboratories on San Juan Island are studying this quirky little fish to understand how it can summon such massive suction power in wet, slimy environments. They are beginning to look at how the biomechanics of clingfish could be helpful in designing devices and instruments to be used in surgery and even to tag and track whales in the ocean.

"Northern clingfish's attachment abilities are very desirable for technical applications, and this fish can provide an excellent model for strongly and reversibly attaching to rough, fouled surfaces in wet environments," said Petra Ditsche, a postdoctoral researcher with Adam Summers' team at Friday Harbor Labs.

Ditsche presented her research on the sticky benefits of clingfish last month in Nashville at the Adhesive and Sealant Council's spring convention in a talk, "Bio-inspired suction attachment from the sea."

Clingfish have a disc on their bellies that is key to how they can hold on with such tenacity. The rim of the disc is covered with layers of micro-sized, hairlike structures. This layered effect allows the fish to stick to surfaces with different amounts of roughness.

"Moreover, the whole disc is elastic and that enables it to adapt to a certain degree on the coarser sites," Ditsche added.

Many marine animals can stick strongly to underwater surfaces - sea stars, mussels and anemones, to name a few - but few can release as fast as the clingfish, particularly after generating so much sticking power.

On land, lizards, beetles, spiders and ants also employ attachment forces to be able to move up walls and along the ceiling, despite the force of gravity. But unlike animals that live in the water, they don't have to deal with changing currents and other flow dynamics that make it harder to grab on and maintain a tight grip. (Read a recent paper by Ditsche and Summers on the differences between adhesion in water and on land.)

Clingfish's unique ability to hold with great force on wet, often slimy surfaces makes them particularly intriguing to study for biomedical applications. Imagine a bio-inspired device that could stick to organs or tissues without harming the patient.

"The ability to retract delicate tissues without clamping them is desirable in the field of laparoscopic surgery," Summers said. "A clingfish-based suction cup could lead to a new way to manipulate organs in the gut cavity without risking puncture."

Researchers are also interested in developing a tagging tool for whales that would allow a tag to noninvasively stick to the animal's body instead of puncturing the skin with a dart, which is often used for longer-term tagging.

Ditsche, Summers and the UW graduate and undergraduate students who are studying the Northern clingfish have no shortage of specimens to choose from. This species is found in the coastal waters near Mexico all the way up to Southern Alaska. They often cling to the rocks near the shore, and at low tide the researchers can poke around in tide pools and turn over rocks to collect the fish. If they can unstick them, that is.

There are about 110 known species in the clingfish family found all over the world. The population around the San Juan Islands is robust and healthy.

Now that they have measured the strength of the suction on different surfaces, the researchers plan to look next at how long clingfish can stick to a surface. They also want to understand why bigger clingfish can stick better than smaller ones, and what implications that could have on developing materials based on their properties.

This research is funded by the National Science Foundation and the Seaver Foundation.

For more information, contact Ditsche at pditsche@uw.edu or 360-610-0860.

Media Contact

Michelle Ma
mcma@uw.edu
206-543-2580

 @HSNewsBeat

http://www.uwnews.org 

Michelle Ma | EurekAlert!

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>