Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New public-private initiative to develop cleaner, greener chemicals

07.08.2008
A new research initiative, bringing together the UK's main public funder of bioscience research with 10 companies, has been launched today to accelerate development of technologies required for the sustainable production of chemicals through biorefining.

The Integrated Biorefinery Technologies Initiative (IBTI) Club is being led by the UK's main public funder of bioscience research - the Biotechnology and Biological Sciences Research Council (BBSRC).

BBSRC will be working with the Bioscience for Business Knowledge Transfer Network and the founder company members of the IBTI Club: Biocaldol, BP Biofuels UK, British Sugar, Croda, Danisco A/S Genencor, Green Biologics, AHDB-HGCA, KWS UK, Syngenta and TMO Renewables.

The IBTI Club will award around £5M, a mixture of BBSRC funds and company contributions, to researchers to investigate basic bioscience with the potential to solve some of the issues the sector currently faces. These include challenges specific to the second generation of biorefining, the technology that could lead to the production of chemicals, materials and fuels from agricultural and food waste and non-food crops instead of from fossil fuels.

The research club forms one part of BBSRC's wider bioenergy investment strategy. In the coming months the Council will announce funding in second generation bioenergy research that will bring its commitments in this area to around £25M. BBSRC's funding is aimed at building capacity and expertise in this area of research to enable the UK to capitalise on the second generation of bioenergy - the renewable plant-based energy that will provide a sustainable energy source without using edible products from the food chain.

Dr Doug Yarrow, BBSRC Director of Corporate Science, said: "Second generation biorefining has the potential to provide us with vital industrial chemicals, lubricants and other materials without the use of fossil fuels. Fossil fuels are a finite resource and their use is contributing to climate change. This public-private Club will invest in the underpinning bioscience that will help us to reduce their use."

To deliver the potential of new biorefining technology the IBTI Club will fund research to:

* Maximise the yield of the biomass going into a biorefinery and the quality and quantity of product produced.

* Develop integrated bioprocessing techniques to remove bottlenecks from current systems and to extract the most valuable compounds from refined feedstocks.

* Maximise the value of by-products from the biorefining process to increase the economic viability of the process.

Chris Tapsell, Technical Director of KWS UK, one of the company members of the Club, said: "The public-private Club to develop biorefining technologies will be more than a sum of its parts. By bringing together world-class UK academic researchers with industrial partners we can ensure that the work we are investing in will be relevant to the challenges of this important sector, from improved raw materials, improved process and increased added value of end products. Our ambition is for the projects funded by the initiative to produce innovative technologies and lead into new demonstration facilities."

The IBTI Club will run for 5 years and will have two calls for proposals. The first call for research projects is being made today. More information is available at:

http://www.bbsrc.ac.uk/business/collaborative_research/industry_clubs/ibti

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: BioScience IBTI biorefining chemicals public-private

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>