Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Psychology Student Finds Less Automation Better for Air Traffic Controllers

19.10.2009
With the nation’s air traffic expected to double by 2025, controllers will probably have to depend more and more on automation. But too much automation could lead to fatal mistakes when that automation fails, a former Texas Tech University psychology student discovered.

The Joint Planning and Development Office, consisting of organizations such as NASA, the Federal Aviation Administration and the Department of Defense, is developing initiatives to help controllers handle increased air traffic that include more automation, said Arathi Sethumadhavan, who recently earned a doctorate degree from the Department of Psychology.

“Fully automated systems are not always desirable because they tend to leave the controller out of the decision-making loop,” Sethumadhavan said. “The controllers tend to become overly reliant on the automation, so that when it fails, it’s hard for the operator to take back control. The key is to find the right level and type of automation that benefits the controller and still keeps the controller in the decision-making loop.”

To help answer the question, Sethumadhavan trained 72 subjects to use a simple air traffic control simulator with four levels of automation. She found that controllers with more automation built into their systems were less able to detect collisions in their airspace when the systems failed than those who had less automation.

Her work, titled Effects of Automation Types on Air Traffic Controller Situation Awareness, was published in the 2009 Proceedings of the Human Factors and Ergonomics Society. She will present her findings during the society’s annual meeting Oct. 19-23.

Her research was funded by the American Psychological Foundation and the Council of Graduate Departments of Psychology.

In one group, color-coded altitudes aided controllers, while a second group’s automated system highlighted possible collisions in the airspace. The third group’s automated system provided recommendations to avoid the possible collisions. The fourth group’s system automatically resolved potential collisions between aircraft.

When the simulation froze at random times, the controllers were asked to recreate aircraft location, altitude, heading, destination, and call sign from memory to determine their situation awareness. The first group with only the color-coded altitudes to assist them was able to recreate their screens far better than the other three groups who had more automated programming.

“The first group had higher situation awareness far beyond those who had higher levels of automation,” she said. “I thought exposure to one automation failure would make the controllers more cautious. So, I made them complete another scenario in which the automation failed. What was shocking was that even after exposure to a failure in the automation, the groups with higher levels of automation continued to have lower situation awareness and were slower to detect a subsequent failure in the automation.

“Automation technology has clear benefits when it functions correctly. But no system is 100 percent reliable. The trick to designing future air traffic automation systems will depend on coming up with the right level and types of automation. Psychology can help make these systems more user-friendly and more interactive to protect against over-reliance.”

Pat DeLucia, professor of psychology, sat on Sethumadhavan’s dissertation committee. She said it holds important information for designers who will implement plans for the next generation of air traffic control operations.

“We know that automation can lead to less ability to recover after a system failure,” DeLucia said. “But Arathi’s dissertation goes deeper and looks into situational awareness with varying degrees of automation. Overall, her work could have the potential to influence the next generation of air transportation systems.”

Sethumadhavan recently was selected as the recipient of the George E. Briggs Dissertation Award from Division 21 of the American Psychological Association for superior dissertation work in the field of applied experimental/engineering psychology. She will receive the award and present her dissertation work at the 2010 APA convention in San Diego.

CONTACT: Arathi Sethumadhavan, former doctoral student, Texas Tech University, (806) 787-6589, or arathisethumadhavan@gmail.com; Pat DeLucia, professor of psychology, Texas Tech University, (806) 742-3711 ext. 259, or pat.delucia@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>