Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four new psoriasis 'hotspots' identified by U-M geneticists

19.10.2010
Discovery may aid in developing new therapies

Scientists at the University of Michigan Heath System and their collaborators have found four new DNA "hotspots" that may one day help guide new treatments for psoriasis, one of the most common autoimmune diseases in the country.

Using cutting-edge methods to peer into the hidden genetic underpinnings of the disabling and disfiguring disease, the research, published in Nature Genetics, further maps the as-yet unknown territories of psoriasis and psoriatic arthritis.

The findings could lead to new drug targets and tailored treatments for the skin disease, says James T. Elder, M.D., Ph.D., the Kirk D. Wuepper Professor of Molecular Genetic Dermatology and lead investigator on the study, which included researchers from the Department of Dermatology and School of Public Health.

"This is a hot topic in genetics these days," Elder says. "Even when you add up all the genes that have been found around the world so far, they only account for about 40 percent of the genetic liability to psoriasis. The question among geneticists continues to be, 'Where is the dark matter?' "

The new research builds on past work by the U-M team, whose discoveries have helped to unveil the hereditary factors of the disease and provide scientists with a better understanding of psoriasis' relationship to other autoimmune diseases, such as Crohn's disease, rheumatoid arthritis and lupus.

So far, research worldwide has linked 25 genes to psoriasis, which has a strong hereditary component. Including the new discoveries, Elder's team was involved in finding more than half of them.

Two of the four new susceptibility loci – or "hotspots" – were strongly linked to psoriatic arthritis, a painful and destructive form of arthritis that affects about 1 in 4 psoriasis patients, Elder says.

The roughly 7.5 million Americans with psoriasis also have a higher risk of dying from related cardiovascular problems.

Once a full catalog of psoriasis genes has been identified, scientists hope to generate a "psoriasis gene profile" that can predict one's risk of developing the disease and pave the way for innovative treatments. Current treatments, including different types of immunosuppressive agents, aren't always effective and can cause serious side effects – though a new drug called Stelara (ustekinumab), which targets one of the genes they discovered, has been giving patients months-long relief, Elder says.

U-M Professor of Biostatistics Goncalo R. Abecasis, D. Phil, was instrumental in designing software and statistical methods to analyze more than 6 million genetic variants from more than 4,000 people.

"It was a pretty daunting task," Abecasis says. "We looked in greater detail at genetic variation than is typical so that we can understand the biology behind psoriasis and build better drugs."

Methodology: The U-M led, multi-center, international study analyzed data from two recent psoriasis genome-wide association studies involving more than 4,300 individuals, with and without the disease. Those findings were followed up in a three-stage replication study involving more than 8,700 people. The newly identified loci include one at NOS2, one at FBXL19, one near PSMA6-NFKBIA, and one near TRAF3IP2. U-M led the research in the discovery of three of the loci. The TRAF3IP2 locus was reported in a second paper to be published in the same issue of Nature Genetics, in which Elder's collaborators from the University of Kiel in Germany took a leading role.

Additional authors: Philip E. Stuart, Rajan P. Nair, Trilokraj Tejasvi, Johann E. Gudjonsson, Jun Ding, Yun Li, Robert Ike, John J. Voorhees, University of Michigan; Eva Ellinghaus, Andre Franke, University of Kiel, Germany; Stephan Weidinger, Bernadette Eberlein, University of Munich, Germany; Christian Gieger, H. Erich Wichmann, Ludwig-Maximilians University, Germany; Manfred Kunz, University of Lübeck, Germany; Gerald G. Krueger, University of Utah; Anne M. Bowcock, Washington University at St. Louis; Ulrich Mrowietz, Michael Weichenthal, University of Kiel, Germany; Henry W. Lim, Henry Ford Hospital, Detroit; Proton Rahman, Memorial University (Canada); Dafna D.Gladman, University of Toronto, Canada.

Funding: The research was supported by grants from the National Institutes of Health, Ann Arbor Veterans Affairs Hospital, German Ministry of Education and Research, and the Canadian Institutes of Health Research.

Disclosure: U-M has filed for patent protection and is actively engaged in finding a commercial partner who can help bring the developments to market.

Reference: Nature Genetics, published online Oct. 17, 2010. Print publication pending.

Resources:

Psoriasis Genetics Study at U-M,
https://www.derm.med.umich.edu/home.html
U-M Department of Dermatology,
http://www.med.umich.edu/derm/index.shtml
National Psoriasis Foundation,
http://www.psoriasis.org/

Ian Demsky | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>