Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pseudogenes may provide clearer understanding of biomarkers

07.07.2014

Alas, the thankless pseudogene.

Dysfunctional, unloved and seemingly of little use, these poor-cousin relatives of genes have lost their protein-coding abilities. They contain material not essential for an organism's survival and are the "last stop" for removal of genomic waste.


This is Han Liang, Ph.D.

Credit: MD Anderson Cancer Center

Not any more. The pseudogene's day may have arrived thanks to scientists at The University of Texas MD Anderson Cancer Center in Houston.

Han Liang, Ph.D., an assistant professor in the Department of Bioinformatics and Computational Biology at the Cancer Center is advancing knowledge of these largely overlooked but increasingly attractive genetic oddities. He and his team completed a study that generated pseudogene expression profiles in 2,808 patient samples representing seven cancer types. That meant analyzing 378 billion RNA sequences to measure the expression levels of close to 10,000 pseudogenes.

The results indicated that the science of pseudogene expression analysis may very well play a key role in explaining how cancer occurs by helping medical experts in the discovery of new biomarkers. The study's findings appear in today's issue of Nature Communications.

Understanding of biomarkers is important for developing therapies that targeted specific tumor sites and for gaining new insight into how patients will fare with various cancers and treatments. Biomarkers are molecules that can indicate the presence of a condition or disease, and are increasingly being used to measure how the body responds to therapies. The emerging field of personalized medicine is built on customizing treatment for patients based on biomarkers.

Liang's study is novel in that understanding of pseudogenes relies on analyzing large numbers of patient samples. Previous studies have been limited by the size of the patient sample groups. Liang's team analyzed data made available from The Cancer Genome Atlas research program. The program is supported by the National Cancer Institute and National Human Genome Research Institute within the National Institutes of Health and is looking at genomic changes in more than 20 different types of cancer.

"The study surveyed seven cancer subtypes including those for breast, kidney, ovarian, colorectal, lung and uterine," said Liang. "Across the cancer types, the tumor subtypes revealed by pseudogene expression showed extensive and strong similarities with subtypes defined by other molecular data."

Liang believes that the study highlights the potential of pseudogene expression analysis as a new "gold standard" for investigating cancer mechanisms and discovering prognostic biomarkers. These biomarkers will allow medical experts to more accurately predict cancer survival rates.

"Pseudogene expression alone can accurately classify the major subtypes of endometrial cancer," said Liang. "Strikingly, in kidney cancer, the pseudogene expression subtypes not only significantly correlate with patient survival, but also help stratify patients in combination with clinical variables."

###

Other collaborating institutions included Baylor College of Medicine and, The University of Texas Health Science Center School of Public Health, both in Houston.

The study was funded by the National Institutes of Health (NIH) (CA143883, CA016672), the NIH/MD Anderson Uterine SPORE Career Development Award, and the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine funded by the Michael & Susan Dell Foundation.

Ron Gilmore | Eurek Alert!
Further information:
http://www.mdanderson.org

Further reports about: Bioinformatics Cancer Genome Health Medicine biomarkers genomic subtypes

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>