Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pseudogenes may provide clearer understanding of biomarkers

07.07.2014

Alas, the thankless pseudogene.

Dysfunctional, unloved and seemingly of little use, these poor-cousin relatives of genes have lost their protein-coding abilities. They contain material not essential for an organism's survival and are the "last stop" for removal of genomic waste.


This is Han Liang, Ph.D.

Credit: MD Anderson Cancer Center

Not any more. The pseudogene's day may have arrived thanks to scientists at The University of Texas MD Anderson Cancer Center in Houston.

Han Liang, Ph.D., an assistant professor in the Department of Bioinformatics and Computational Biology at the Cancer Center is advancing knowledge of these largely overlooked but increasingly attractive genetic oddities. He and his team completed a study that generated pseudogene expression profiles in 2,808 patient samples representing seven cancer types. That meant analyzing 378 billion RNA sequences to measure the expression levels of close to 10,000 pseudogenes.

The results indicated that the science of pseudogene expression analysis may very well play a key role in explaining how cancer occurs by helping medical experts in the discovery of new biomarkers. The study's findings appear in today's issue of Nature Communications.

Understanding of biomarkers is important for developing therapies that targeted specific tumor sites and for gaining new insight into how patients will fare with various cancers and treatments. Biomarkers are molecules that can indicate the presence of a condition or disease, and are increasingly being used to measure how the body responds to therapies. The emerging field of personalized medicine is built on customizing treatment for patients based on biomarkers.

Liang's study is novel in that understanding of pseudogenes relies on analyzing large numbers of patient samples. Previous studies have been limited by the size of the patient sample groups. Liang's team analyzed data made available from The Cancer Genome Atlas research program. The program is supported by the National Cancer Institute and National Human Genome Research Institute within the National Institutes of Health and is looking at genomic changes in more than 20 different types of cancer.

"The study surveyed seven cancer subtypes including those for breast, kidney, ovarian, colorectal, lung and uterine," said Liang. "Across the cancer types, the tumor subtypes revealed by pseudogene expression showed extensive and strong similarities with subtypes defined by other molecular data."

Liang believes that the study highlights the potential of pseudogene expression analysis as a new "gold standard" for investigating cancer mechanisms and discovering prognostic biomarkers. These biomarkers will allow medical experts to more accurately predict cancer survival rates.

"Pseudogene expression alone can accurately classify the major subtypes of endometrial cancer," said Liang. "Strikingly, in kidney cancer, the pseudogene expression subtypes not only significantly correlate with patient survival, but also help stratify patients in combination with clinical variables."

###

Other collaborating institutions included Baylor College of Medicine and, The University of Texas Health Science Center School of Public Health, both in Houston.

The study was funded by the National Institutes of Health (NIH) (CA143883, CA016672), the NIH/MD Anderson Uterine SPORE Career Development Award, and the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine funded by the Michael & Susan Dell Foundation.

Ron Gilmore | Eurek Alert!
Further information:
http://www.mdanderson.org

Further reports about: Bioinformatics Cancer Genome Health Medicine biomarkers genomic subtypes

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>