Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pseudogenes may provide clearer understanding of biomarkers

07.07.2014

Alas, the thankless pseudogene.

Dysfunctional, unloved and seemingly of little use, these poor-cousin relatives of genes have lost their protein-coding abilities. They contain material not essential for an organism's survival and are the "last stop" for removal of genomic waste.


This is Han Liang, Ph.D.

Credit: MD Anderson Cancer Center

Not any more. The pseudogene's day may have arrived thanks to scientists at The University of Texas MD Anderson Cancer Center in Houston.

Han Liang, Ph.D., an assistant professor in the Department of Bioinformatics and Computational Biology at the Cancer Center is advancing knowledge of these largely overlooked but increasingly attractive genetic oddities. He and his team completed a study that generated pseudogene expression profiles in 2,808 patient samples representing seven cancer types. That meant analyzing 378 billion RNA sequences to measure the expression levels of close to 10,000 pseudogenes.

The results indicated that the science of pseudogene expression analysis may very well play a key role in explaining how cancer occurs by helping medical experts in the discovery of new biomarkers. The study's findings appear in today's issue of Nature Communications.

Understanding of biomarkers is important for developing therapies that targeted specific tumor sites and for gaining new insight into how patients will fare with various cancers and treatments. Biomarkers are molecules that can indicate the presence of a condition or disease, and are increasingly being used to measure how the body responds to therapies. The emerging field of personalized medicine is built on customizing treatment for patients based on biomarkers.

Liang's study is novel in that understanding of pseudogenes relies on analyzing large numbers of patient samples. Previous studies have been limited by the size of the patient sample groups. Liang's team analyzed data made available from The Cancer Genome Atlas research program. The program is supported by the National Cancer Institute and National Human Genome Research Institute within the National Institutes of Health and is looking at genomic changes in more than 20 different types of cancer.

"The study surveyed seven cancer subtypes including those for breast, kidney, ovarian, colorectal, lung and uterine," said Liang. "Across the cancer types, the tumor subtypes revealed by pseudogene expression showed extensive and strong similarities with subtypes defined by other molecular data."

Liang believes that the study highlights the potential of pseudogene expression analysis as a new "gold standard" for investigating cancer mechanisms and discovering prognostic biomarkers. These biomarkers will allow medical experts to more accurately predict cancer survival rates.

"Pseudogene expression alone can accurately classify the major subtypes of endometrial cancer," said Liang. "Strikingly, in kidney cancer, the pseudogene expression subtypes not only significantly correlate with patient survival, but also help stratify patients in combination with clinical variables."

###

Other collaborating institutions included Baylor College of Medicine and, The University of Texas Health Science Center School of Public Health, both in Houston.

The study was funded by the National Institutes of Health (NIH) (CA143883, CA016672), the NIH/MD Anderson Uterine SPORE Career Development Award, and the Lorraine Dell Program in Bioinformatics for Personalization of Cancer Medicine funded by the Michael & Susan Dell Foundation.

Ron Gilmore | Eurek Alert!
Further information:
http://www.mdanderson.org

Further reports about: Bioinformatics Cancer Genome Health Medicine biomarkers genomic subtypes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>