Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prussian blue linked to the origin of life

15.12.2009
A team of researchers from the Astrobiology Centre (INTA-CSIC) has shown that hydrogen cyanide, urea and other substances considered essential to the formation of the most basic biological molecules can be obtained from the salt Prussian blue. In order to carry out this study, published in the journal Chemistry & Biodiversity, the scientists recreated the chemical conditions of the early Earth.

"We have shown that when Prussian blue is dissolved in ammoniac solutions it produces hydrogen cyanide, a substance that could have played a fundamental role in the creation of the first bio-organic molecules, as well as other precursors to the origin of life, such as urea, dimethylhydantoin and lactic acid", Marta Ruiz Bermejo, lead author of the study and a researcher at the Astrobiology Centre (CSIC-INTA), tells SINC.

Urea is considered to be an important reagent in synthesising pyrimidines (the derivatives of which form part of the nucleic acids DNA and RNA), and it has been suggested that hydantoins could be the precursors of peptides and amino acids (the components of proteins), while lactic acid is also of biological interest because, along with malic acid, it can play a role in electron donor-recipient systems.

The researcher and her team have proved that these and other compounds originate from the cyanide liberated by the salt Prussian blue (the name of which refers to the dye used in the uniforms of the Prussian Army) when it is subjected for several days to conditions of pH12 and relatively high temperatures (70-150ºC) in a damp, oxygen-free ammoniac environment, similar to early conditions on Earth. The results of the study have been published recently in the journal Chemistry & Biodiversity.

"In addition, when Prussian blue decomposes in this ammoniac, anoxic environment, this complex salt, called iron (III) hexacyanoferrate (II), also turns out to be an excellent precursor of hematite, the most stable and commonly found form of iron (III) oxide on the surface of the Earth", explains Ruiz Bermejo.

Hematite is related to the so-called Banded Iron Formations (BIF), the biological or geological origin of which is the source of intense debate among scientists. The oldest of these formations, more than two billion years old, have been found in Australia.

The researchers have confirmed in other studies that Prussian blue can be obtained in prebiotic conditions (from iron ions in methane atmosphere conditions with electrical discharges). The synthesis of this salt and its subsequent transformation into hematite offers an alternative model to explain the formation of the banded iron in abiotic conditions in the absence of oxygen.

Ruiz Bermejo concludes that Prussian blue "could act as a carbon concentrator in the prebiotic hydrosphere, and that its wet decomposition in anoxic conditions could liberate hydrogen cyanide and cyanogen, with the subsequent formation of organic molecules and iron oxides".

References:

Marta Ruiz Bermejo, Celia Rogero, César Menor Salván, Susana Osuna Esteban, José Ángel Martín-Gago y Sabino Veintemillas Verdaguer. "Thermal wet decomposition of Prussian Blue: Implications for Prebiotic Chemistry". CHEMISTRY & BIODIVERSITY 6 (9): 1309-1322, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>