Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype NIST Method Detects and Measures Elusive Hazards

10.09.2009
A chemist at the National Institute of Standards and Technology (NIST) has demonstrated a relatively simple, inexpensive method for detecting and measuring elusive hazards such as concealed explosives and toxins, invisible spoilage in food or pesticides distributed in soil by wind and rain.

The prototype method is more sensitive than conventional techniques for detecting traces of these materials, which are polar—like water molecules, having distinct electrically positive and negative ends—and do not readily evaporate.

As described in a new paper,* NIST researcher Tom Bruno enhanced a technique called “headspace analysis,” which is the detection and analysis of trace levels of chemical compounds from a solid or liquid that are released into the surrounding atmosphere. Bruno’s enhancements greatly improve the efficiency of sample collection, for the first time making the technique suitable for detecting low concentrations of polar, low-volatility, compounds such as explosives. Preliminary results indicate the method is sensitive enough to measure amounts of target materials that constitute as little as 0.0000002 percent of a sample.

The sample collection device consists of several coils of fine tubing just 0.32 millimeters in inner diameter. Bruno modified the inner coating, which efficiently attracts and retains chemicals across its large surface area. The device can be used with a sample-heating oven as part of a laboratory analysis system or taken into the field for sample collection. To extract target molecules from a sample, the coil is placed inside an insulated cylinder and chilled with a cold air stream to minus 40 degrees Celsius. A gas, such as helium, is swept across the sample held in the oven or the coil device, gathering up target molecules along the way, and through the fine tubing. Chilling the coils—part of Bruno’s innovation—makes collection of target molecules more efficient. The tubing is washed with a solvent, or heated, to release the captured molecules for analysis.

Bruno found that the mass of the collected molecules increases with rising oven and sweep gas temperatures, offering a way to detect specific target molecules under particular field conditions. NIST researchers demonstrated the new method using several explosives, including the pure explosive TNT and the plastic explosive mixture C-4. Among other applications, NIST researchers have used the method to improve sampling and analysis of fire retardants in a car interior, a topic of interest because of concerns expressed by some that the “new car smell” may be a health hazard. They also are using the method to detect volatile protein decomposition products in spoiled meats. Environmental applications could include detection of pesticides deposited on soils subject to weathering effects.

The work is supported by the Department of Homeland Security.

* T.J. Bruno. Simple, quantitative headspace analysis by cryoadsorption on a short alumina PLOT column. 2009. Journal of Chromatographic Science, Vol. 47, pp. 569-574, August.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>