Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protons power protein portal to push zinc out of cells

23.06.2014

Protein, linked to type 2 diabetes, prevents zinc toxicity

Researchers at The Johns Hopkins University report they have deciphered the inner workings of a protein called YiiP that prevents the lethal buildup of zinc inside bacteria. They say understanding YiiP's movements will help in the design of drugs aimed at modifying the behavior of ZnT proteins, eight human proteins that are similar to YiiP, which play important roles in hormone secretion and in signaling between neurons.


The twisting (blue arrows) of the red portion of the zinc ion channel allows the opening and closing of its gate. Left: the channel is open to the inside of the cell, allowing zinc (green) to flow into its binding site (pink star) after hydrogen flows out. Right: the channel is open to the outside of the cell, allowing zinc to flow out and hydrogen to flow in.

Credit: Fu Lab, Johns Hopkins Medicine

Certain mutations in one of them, ZnT8, have been associated with an increased susceptibility to type 2 diabetes, but mutations that destroy its function seem to be protective.

A summary of the research will be published online in the journal Nature on June 22.

... more about:
»Medicine »hydroxyl »protons »radicals »segments »zinc

"Zinc is necessary for life. It requires transporter proteins to get into and out of cells, where it does its work," says Dax Fu, Ph.D., an associate professor of physiology. "If the transporter proteins malfunction, zinc concentrations can reach toxic levels. This study shows us how zinc-removing proteins work."

Zinc is needed to activate genes and to enable many proteins to function. In pancreatic beta cells, high concentrations of zinc are found inside the packages of insulin that they produce, although its precise role there is unknown.

YiiP is found partially embedded in the membranes of the bacterium E. coli, where it has a similar function to the ZnT human proteins. In a previous study, Fu's group mapped YiiP's atomic structure and found that there is a zinc-binding pocket in its center. But how a single pocket could transport zinc from one side of a membrane to the other was a mystery, he says.

Knowing that the protein lets one hydrogen ion — or proton — into the cell for every zinc ion it sends out, the team suspected there was a hidden channel that opened up to allow the ions to switch places.

To test this idea and to find out which inner segments of the protein make up the channel, the team collaborated with scientists at Brookhaven National Laboratory to shine intense X-rays at the protein while it was immersed in water. The X-rays caused the water molecules to split into two components: hydrogen atoms and hydroxyl radicals. When the hidden channel within the protein opened up, the hydroxyl radicals bonded with the exposed protein segments, "marking" the ones that created the channel.

The researchers then cut up YiiP using enzymes and analyzed the resulting pieces in an instrument that helped them identify the makeup of each piece. By comparing those pieces to pieces of YiiP that had not been exposed to hydroxyl radicals, the researchers could tell which segments create the channel.

Using this and other information, the scientists were able to figure out how the protein works.

Outside the membrane is an abundance of protons, with a lower concentration inside the membrane, creating what is known as a concentration gradient. The protons want to flow "down" this gradient into the cell, like water following gravity down a waterfall, says Fu. Thus, when the central pocket of the transporter protein is open to the outside, a proton will bind to the pocket.

"When the protons move from a place of high concentration to low concentration, they generate a force like falling water does," he says. The protein harnesses this force to change its shape, cutting off the pocket's access to the outside environment and opening up its access to the inside. There, the proton will continue its "fall" by unbinding from the pocket and entering the inside space.

Once it has released the proton, the pocket is free to bind to zinc. This binding again changes the protein's shape, shutting off the pocket's access to the inside of the membrane and once again exposing it to the outside. A proton then drives the zinc ion out of the pocket, and the cycle continues.

"Understanding the way the protein works, especially which segments of the protein do what, will help us design better drugs to moderate its activity wherever it is found," says Fu.

###

Other authors of the report include Jie Cheng of the Johns Hopkins University School of Medicine; Sayan Gupta, Rhijuta D'Mello and Mark Chance of Case Western Reserve University; and Jin Chai of Brookhaven National Laboratory.

This work was supported by grants from the National Institute of General Medical Sciences (R01GM065137), the National Institute of Biomedical Imaging and Bioengineering (P30-EB-09998, R01-EB-09688), and the U.S. Department of Energy (KC0304000, DE-AC02-98CH10886).

On the Web:

Link to article: http://dx.doi.org/10.1038/nature13382

Fu Lab: http://fulab.johnshopkins.edu/

Shawna Williams | Eurek Alert!

Further reports about: Medicine hydroxyl protons radicals segments zinc

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>