Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protocols improve detection of microRNAs for diagnosis

07.12.2011
MicroRNAs (miRNAs) that regulate processes including fertilization, development, and aging show promise as biomarkers of disease.

They can be collected from routinely collected fluids such as blood, saliva, and urine. However, a number of factors can interfere with the accuracy of miRNA tests. In a study published online today in the Journal of Molecular Diagnostics, a group of researchers provide clear procedures for the collection and analysis of miRNA, significantly improving their diagnostic accuracy.

"Our study demonstrates that inherent differences in biological samples and the methods used to collect and analyze them can dramatically affect the detection and quantitation of microRNAs," reports lead investigator Dominik M. Duelli, PhD, Department of Cellular and Molecular Pharmacology, Chicago Medical School at Rosalind Franklin University of Medicine and Science. "We developed measures to overcome the interfering activities and improved the sensitivity of miRNA detection up to 30-fold."

Over 1,000 miRNAs exist in the human body. Deregulation of specific miRNAs is associated with disease. Measuring the amount of miRNAs in body fluids can aid in the diagnosis of disease or conditions such as pregnancy. Dr. Duelli and his colleagues quantified two miRNAs: miR-16, which acts as a tumor suppressor and is deregulated or lost in some cancers, including breast cancer; and miR-223, which has been implicated in pregnancy and other conditions, as well as in some malignant diseases.

"A fundamental challenge to making microRNA diagnostics broadly available has been the inability to isolate enough high quality material to analyze. Our paper outlines ways of effectively collecting blood plasma samples, thus bringing us one step closer to the goal of making [miRNA] disease diagnostics a reality," adds co-investigator Sarah Linnstaedt, PhD, of Duke University.

The authors found that the choice of blood collection tube affects quantitation. Traditional green-top heparin tubes interfered nearly completely with miRNA detection. Grey-top tubes containing the anticoagulant sodium fluoride and potassium oxalate (NaF/KOx) provided the best results. Although miR-16 is about 500 times more abundant in blood plasma than miR-223, the results for both were similar, indicating that the differences in detection resulting from the choice of collection method apply to other miRNAs. Furthermore, collection of miR-223 in serum yielded more variable results, signifying that for some miRNAs, analysis of blood in plasma form is preferred.

The study indicated that natural components of blood plasma co-purify with miRNAs, interfering with their detection. The authors identified extra steps in purification, and the ideal dilution level, to reduce the interference. "Although counterintuitive, by reducing the starting material, inhibitors were presumed to be diluted below a threshold of interference. Careful titration of starting material yields more accurate miRNA quantitation," explains Dr. Duelli. In another approach, the authors avoided the problem of contamination by combining an enzyme that overcomes plasma inhibitors with standard enzymes to increase the sensitivity of miRNA detection by about 30-fold.

Finally, the authors observed that differences in plasma composition among individual donors yield different miRNA measurements. "These results raise the possibility that factors including diet, exercise, circadian rhythms, and seasons, which alter the blood chemistry, might affect miRNA detection and quantitation," says Dr. Duelli.

"The implications of this work are that without consideration of the variables we have identified, miRNA quantitation of human samples may not be reliable for the purpose of biomarker development. We provide approaches that enable faithful quantitation of miRNA abundance in body fluid," concludes Dr. Duelli.

The article is "Plasma Components Affect Accuracy of Circulating Cancer-Related MicroRNA Quantitation," by D-J. Kim, S. Linnstaedt, J. Palma, J. Cheol Park, E. Ntrivalas, J.Y.H. Kwak-Kim, A. Gilman-Sachs, K. Beaman, M.L. Hastings, J.N. Martin, and D.M. Duelli (doi: 10.1016/j.jmoldx.2011.09.002). Published online ahead of its issue, the study will appear in the Journal of Molecular Diagnostics, Volume 14, Issue 1 (January 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>