Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Proteins Talk to Each Other

23.09.2009
Caspase-3 Cleaves in Unforeseen Ways

Investigators at Burnham Institute for Medical Research (Burnham) have identified novel cleavage sites for the enzyme caspase-3 (an enzyme that proteolytically cleaves target proteins).

Using an advanced proteomic technique called N-terminomics, Guy Salvesen, Ph.D., professor and director of the Apoptosis and Cell Death Research program of Burnham’s NCI-designated Cancer Center, and colleagues determined the cleavage sites on target proteins and found, contrary to previous understanding, that caspase-3 targets á-helices as well as unstructured loops. In addition, researchers found that caspase-3 and the substrates it binds to co-evolved. The paper was published on September 20 in the journal Nature Structural & Molecular Biology.

Prior to this study, scientists believed that proteases primarily cleave in unstructured loops, unstable parts of proteins that are readily accessible. The discovery that caspase-3 also cleaves á-helices contradicts a current dogma and offers new insights into protein signaling pathways.

“This was a big surprise because there shouldn’t be anything for a protease to grab onto in a helix,” said Dr. Salvesen. “We found that the basic concept that they don’t cleave to helices is wrong. However, though we’ve found that proteases can cleave helices, we don’t believe that’s their biological function.”

In addition to determining cleavage sites, the team also determined which interactions were “biologically significant.” In other words which cleavages altered the function of the target protein and which ones had little impact.

The team tested the human caspase-3 and the Staphylococcal protease glutamyl endopeptidase (GluC) against the Escherichia coli (E. coli) proteosome. In a second set, the human caspase substrate was challenged with human caspase-3 . The researchers found cleavage sites using N-terminal proteomics (N-terminomics), in which cleaved substrates are tagged at an exposed edge (N-terminal) and analyzed though mass spectrometry. The data from these assays were then matched against lists of substrates in the Protein Data Bank. Notably, caspase-3 did not cleave E. coli proteins as effectively as it did human proteins. However, when hybrid human/E. coli proteins were constructed, cleavage was greatly improved, leading researchers to conclude that caspase-3 co-evolved with its human substrates.

Because they alter the functions of other proteins, proteases like caspase-3 are critical to cell signaling. Understanding how and where they interface with target proteins enhances our ability to understand the progress of diseases.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. For the past decade (1999-2009), Burnham ranked first worldwide in the fields of biology and biochemistry for the impact of its research publications (defined by citations per publication), according to the Institute for Scientific Information.

Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org
http://www.burnham.org/default.asp?contentID=779

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>