Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So many proteins, so much promise

31.10.2011
New top-down strategy of identifying proteins could lead to early detection of disease

The human genome has been mapped. Now, it's on to proteins, a much more daunting task. There are 20,300 genes, but there are millions of distinct protein molecules in our bodies. Many of these hold keys to understanding disease and targeting treatment.

A team led by Northwestern University chemical biologist Neil Kelleher has developed a new "top-down" method that can separate and identify thousands of protein molecules quickly. Many have been skeptical that such an approach, where each protein is analyzed intact instead of in smaller parts, could be done on such a large scale.

The promise of a top-down strategy is that the molecular data scientists do collect will be more closely linked to disease.

"Accurate identification of proteins could lead to the identification of biomarkers and early detection of disease as well as the ability to track the outcome of treatment," Kelleher said. "We are dramatically changing the strategy for understanding protein molecules at the most basic level. This is necessary for the Human Proteome Project -- the mapping of all healthy human proteins in tissues and organs -- to really take off."

Kelleher is the Walter and Mary E. Glass Professor of Molecular Biosciences and professor of chemistry in the Weinberg College of Arts and Sciences. He also is director of the Proteomics Center of Excellence and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Kelleher says his approach is conceptually simple. "We take proteins -- those swimming around in cells -- and we measure them," he said. "We weigh proteins precisely and identify them directly. The way everyone else is doing it is by digesting the proteins, cutting them up into smaller bits called peptides, and putting them back together again. I call it the Humpty Dumpty problem."

The new strategy, Kelleher says, solves the "protein isoform problem" of the "bottom-up" approach where the smaller peptides often do not map cleanly to single human genes. The study will be published Oct. 30 by the journal Nature.

The top-down method can accurately identify which gene produced which protein. The bottom-up method is only 60 to 90 percent accurate in identifying proteins precisely.

"We need to define all the protein molecules in the human body," Kelleher said. "First, we need a map of healthy protein forms, which will become a highly valuable reference list for understanding damaged and diseased forms of proteins. Our technology should allow us to get farther down this road faster."

In the first large-scale demonstration of the top-down method, the researchers were able to identify more than 3,000 protein forms created from 1,043 genes from human HeLa cells.

Their goal was to identify which gene each protein comes from -- to provide a one-to-one picture. They were able to produce this accurate map of thousands of proteins in just a few months.

The researchers also can produce the complete atomic composition for each protein. "If a proton is missing, we know about it," Kelleher said.

One gene they studied, the HMGA1 gene associated with premature aging of cells, produces about 20 different protein forms.

Kelleher's team developed a four-dimensional separation system that uses separations and mass spectrometry to measure the charge, mass and weight of each protein as well as how "greasy" a protein is. The software the researchers developed to analyze the data during years of work prior to the study proved critical to the success of the top-down method.

"If you want to know how the proteins in cancer really work and change, top-down mass spectrometry is getting to the point where it can be part of the discussion," Kelleher said.

"Analyzing the entire set of proteins expressed in a cell presents a continuing and significant technical challenge to the field of proteomics," said Charles Edmonds, who oversees proteomics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By combining multiple fractionation technologies with mass spectrometry, Dr. Kelleher and colleagues have demonstrated more than an order of magnitude improvement in proteome coverage. This is a great start."

The title of the paper is "Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics." In addition to Kelleher, 17 other co-authors contributed to the study.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>