Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So many proteins, so much promise

31.10.2011
New top-down strategy of identifying proteins could lead to early detection of disease

The human genome has been mapped. Now, it's on to proteins, a much more daunting task. There are 20,300 genes, but there are millions of distinct protein molecules in our bodies. Many of these hold keys to understanding disease and targeting treatment.

A team led by Northwestern University chemical biologist Neil Kelleher has developed a new "top-down" method that can separate and identify thousands of protein molecules quickly. Many have been skeptical that such an approach, where each protein is analyzed intact instead of in smaller parts, could be done on such a large scale.

The promise of a top-down strategy is that the molecular data scientists do collect will be more closely linked to disease.

"Accurate identification of proteins could lead to the identification of biomarkers and early detection of disease as well as the ability to track the outcome of treatment," Kelleher said. "We are dramatically changing the strategy for understanding protein molecules at the most basic level. This is necessary for the Human Proteome Project -- the mapping of all healthy human proteins in tissues and organs -- to really take off."

Kelleher is the Walter and Mary E. Glass Professor of Molecular Biosciences and professor of chemistry in the Weinberg College of Arts and Sciences. He also is director of the Proteomics Center of Excellence and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Kelleher says his approach is conceptually simple. "We take proteins -- those swimming around in cells -- and we measure them," he said. "We weigh proteins precisely and identify them directly. The way everyone else is doing it is by digesting the proteins, cutting them up into smaller bits called peptides, and putting them back together again. I call it the Humpty Dumpty problem."

The new strategy, Kelleher says, solves the "protein isoform problem" of the "bottom-up" approach where the smaller peptides often do not map cleanly to single human genes. The study will be published Oct. 30 by the journal Nature.

The top-down method can accurately identify which gene produced which protein. The bottom-up method is only 60 to 90 percent accurate in identifying proteins precisely.

"We need to define all the protein molecules in the human body," Kelleher said. "First, we need a map of healthy protein forms, which will become a highly valuable reference list for understanding damaged and diseased forms of proteins. Our technology should allow us to get farther down this road faster."

In the first large-scale demonstration of the top-down method, the researchers were able to identify more than 3,000 protein forms created from 1,043 genes from human HeLa cells.

Their goal was to identify which gene each protein comes from -- to provide a one-to-one picture. They were able to produce this accurate map of thousands of proteins in just a few months.

The researchers also can produce the complete atomic composition for each protein. "If a proton is missing, we know about it," Kelleher said.

One gene they studied, the HMGA1 gene associated with premature aging of cells, produces about 20 different protein forms.

Kelleher's team developed a four-dimensional separation system that uses separations and mass spectrometry to measure the charge, mass and weight of each protein as well as how "greasy" a protein is. The software the researchers developed to analyze the data during years of work prior to the study proved critical to the success of the top-down method.

"If you want to know how the proteins in cancer really work and change, top-down mass spectrometry is getting to the point where it can be part of the discussion," Kelleher said.

"Analyzing the entire set of proteins expressed in a cell presents a continuing and significant technical challenge to the field of proteomics," said Charles Edmonds, who oversees proteomics grants at the National Institute of General Medical Sciences of the National Institutes of Health. "By combining multiple fractionation technologies with mass spectrometry, Dr. Kelleher and colleagues have demonstrated more than an order of magnitude improvement in proteome coverage. This is a great start."

The title of the paper is "Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics." In addition to Kelleher, 17 other co-authors contributed to the study.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>