Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The proteins that help plants keep time

18.03.2010
Researchers at the RIKEN Plant Science Center have clarified the function of three proteins that play a central role in the circadian clock in plants. The finding, to appear in the journal The Plant Cell, opens the door to the engineering of plant clock systems, with powerful applications to agriculture.

The circadian clock, a 24-hour biological cycle governing everything from seasonal flowering to hormone secretion, has been the focus of intense attention in plant science research for its wide-reaching implications to growth and development.

At the heart of this clock is a feedback loop of gene expression known as the ‘central oscillator’, whose interaction is thought to regulate biological rhythms governing various physiological processes.

With their finding, the researchers have clarified the way in which this oscillator adjusts its activity throughout the day. They show that the three proteins studied, the Pseudo-Response Regulators PRR5, PRR7 and PRR9, associate with promoter regions of the genes CCA1 and LHY to repress transcription of these genes at different times. Collectively, this sequential repression shapes the clock’s activity over the 16-hour period from day to night.

An essential component of the central oscillator, this mechanism of gene repression fills a crucial gap in our understanding of circadian clock function in plants. Artificial manipulation of the three proteins enables control over time-specific components of the clock system connected to properties such as plant size and stress tolerance, with significant potential benefits to agriculture.

For more information, please contact:
Dr. Norihito Nakamichi
Biodynamics Research Team
RIKEN Plant Science Center
Tel: +81-(0)48-503-9576 / Fax: +81-(0)48-503-9609
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-1223
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>