Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins linked with Alzheimer's, other neurodegenerative diseases found to clump in normal aging

11.08.2010
In neurodegenerative diseases, clumps of insoluble proteins appear in patients' brains.

These aggregates contain proteins that are unique to each disease, such as amyloid beta in Alzheimer's disease, but they are intertwined with small amounts of many other insoluble proteins that are normally present in a soluble form in healthy young individuals. For years, these other proteins were thought to be accidental inclusions in the aggregates, much as a sea turtle might be caught in a net of fish.

Now, in a surprising new finding, researchers at the University of California, San Francisco, report that many of the proteins present as minor components of disease aggregates actually clump together as a normal part of aging in healthy individuals.

The discovery, in the C. elegans roundworm, refutes a widespread belief that the presence of insoluble proteins is unique to degenerative disease and that the main proteins traditionally associated with each disease (like amyloid beta in Alzheimer's disease) are the only ones that could have an impact.

The research showed that a variety of common soluble proteins, such as those responsible for growth, can become insoluble and form aggregates in animals as they age. Moreover, the research demonstrated that gene manipulations that extend C. elegans lifespan prevent these common proteins from clumping.

The findings appear in the August 11, 2010 issue of the journal PLoS Biology and are freely available online at www.plosbiology.org.

"If you take people with Alzheimer's and look at their aggregates, there are many other proteins in the clump that no one has paid much attention to," said UCSF biochemist Cynthia Kenyon, PhD, director of the Larry L. Hillblom Center for the Biology of Aging at UCSF and senior author of the paper. "It turns out that about half of these proteins are aggregating proteins that become insoluble as a normal part of aging."

The team found that, in the presence of proteins specific to Huntington's disease, these other insoluble proteins actually sped up the course of the disease, indicating that they could be fundamental to its progression.

The findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease, Kenyon said.

The presence of insoluble protein aggregates has long been recognized as a hallmark of such neurodegenerative diseases as Alzheimer's, Huntington's and amyotrophic lateral sclerosis (ALS). The team, led by first author Della C. David, PhD, a postdoctoral scholar in the UCSF Department of Biochemistry and Biophysics, asked a simple question that had never been addressed: Do normal proteins form insoluble clumps when normal, healthy individuals age?

They identified roughly 700 proteins in a C. elegans worm that become insoluble as the animal ages. These insoluble proteins are highly over-represented in the aggregates found in human neurodegeneration, the researchers wrote in their paper. They found that many of the proteins that became insoluble were already known to accelerate the aging process and to influence the aggregation of the major disease proteins. Yet even in the healthy aging worms, these proteins had a propensity for clumping and forming hard, rocklike structures.

The team found that this aggregation was significantly delayed or even halted by reducing insulin and IGF-1 hormone activity, whose reduction is known to extend animal lifespan and to delay the progression of Huntington's and Alzheimer's disease in animal models of neurodegenerative diseases.

While there are indisputable differences between worms and men, the roundworm C. elegans (Caenorhabditis elegans) often has led the way in advancing our understanding of human biology, notably in such areas as the mechanism of cell death, insulin pathways, the genes involved in cancer, and aging.

Some of those advances have originated in Kenyon's lab, including the discovery that blocking the activity of a single gene in C. elegans doubled the animal's lifespan. The gene, known as daf-2, encodes a receptor for insulin as well as for IGF-1. The same or related hormone pathways have since been shown to affect lifespan in fruit flies and mice, and are thought to influence lifespan in humans.

Co-authors on the paper include Michael P. Cary, also in the UCSF Department of Biochemistry and Biophysics; Noah Ollikainen, in the UCSF Graduate Program in Biological and Medical Informatics; and Jonathan C. Trinidad and Alma L. Burlingame, both with the Mass Spectrometry Facility in the UCSF Department of Pharmaceutical Chemistry.

The research was supported by fellowships from the Swiss National Foundation and the Larry L. Hillblom Foundation. The work was further supported by the UCSF Program for Breakthrough Biomedical Research and the National Institutes of Health. The authors have declared that no competing interests exist.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit www.ucsf.edu.

Follow UCSF on Twitter at http://twitter.com/ucsfnews

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>