Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins hoist the anchor

PNAS: How switch proteins are extracted from the membrane

Researchers from the Ruhr-Universität Bochum (RUB) and from the MPI Dortmund have for the first time successfully reproduced the recycling process of proteins regulating cellular transport in a biophysical experiment. In doing so, they traced in detail the way the central switch protein Rab is being extracted from the lipid membrane.

The Rab protein (grey and magenta) with bound GDP (multi-coloured) sits on a membrane surface. As the infrared ray is reflected from the surface, the processes that take place on the membrane can be studied. The GDI, represented by the hand, seizes the Rab protein and extracts it from the membrane. The timeline of the infrared spectra (top centre) is resolved in the spectrometer (top right).

Credit: Konstantin Gavriljuk, RUB

The team of PD Dr Carsten Kötting, Prof Dr Klaus Gerwert (Department of Biophysics, RUB) and Prof Dr Roger S. Goody (Max Planck Institute for Molecular Physiology, Dortmund) has published the spectroscopic and dynamic data in the PNAS journal's Online Early Edition. "Until now, this protein's interactions have only ever been studied in a solution – i.e. without a lipid membrane. The step into the protein's natural environment opens up entirely new possibilities," says Carsten Kötting. This is because many disease-relevant protein interactions within a cell take place on a membrane.

From solution to membrane

Unlike Ras proteins that regulate cell growth, Rab GTPases control the traffic between different cell sections. Just like Ras proteins, Rab GTPases (also called Rab proteins) act as switches. Turned "on", the high-energy GTP molecule is bound; turned "off", the lower-energy GDP molecule is bound. The switch protein Rab does not simply swim through the cell with the trafficked load it is carrying; rather, it is fixed within the membrane by means of lipid anchors. After the trafficking stage has been successfully completed, Rab is extracted from the membrane and recycled. This process has never yet been simulated in a biophysical experiment. The Bochum-Dortmund team has succeeded in manufacturing the Rab protein with the membrane anchor in its active form in large quantities, to bind it to an artificial lipid membrane and to investigate the process of extracting the switch protein from the membrane in a spectrometer.
Seize and pull hard

For this purpose, biophysicists used the method of ATR infrared spectroscopy, which enabled them to visualise processes on surfaces such as lipid membranes. They paid particular attention to the GDI protein that binds the Rab protein and its lipid anchor. The question was whether Rab dissociates spontaneously from the membrane and is seized by GDI or whether GDI plays an active part in the Rab recycling process. With ATR spectroscopy, the team was for the first time able to differentiate between these two processes and demonstrate the GDI protein's active role. "We observed that GDI approaches the membrane and seizes the Rab protein then and there," explains Konstantin Gavriljuk. "Thus, Rab is extracted from the membrane by GDI much more quickly than it would have otherwise dissociated."
Legionella affect cellular trafficking processes

Rab GTPases and their interaction partners have an impact on certain diseases, for example some forms of mental disabilities and legionnaire's disease. The agents causing legionnaire's disease, namely legionella, attack Rab proteins and modify them chemically, thus affecting cellular trafficking processes; they are thus able to reproduce in human cells. The experiments have shown that the chemical modification caused by legionella inhibits the process of Rab extraction from the membrane by GDI. "We have now gained a better understanding of where legionella attack cells and of the consequences thereof," says Carsten Kötting.

Project funding

The project funds are supplied by SFB 642 "GTP and ATP-dependent Membrane Processes", whose spokesperson is Prof Gerwert.

Bibliographic record

K. Gavriljuk, A. Itzen, R.S. Goody, K. Gerwert, C. Kötting (2013): Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy, PNAS, doi:10.1073/pnas.1307655110
Further information

Prof Dr Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail:

PD Dr Carsten Kötting, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail:

A click away

Previous information re.: Rab
Editor: Dr. Julia Weiler

Dr. Carsten Kötting | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>