Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins hoist the anchor

06.08.2013
PNAS: How switch proteins are extracted from the membrane

Researchers from the Ruhr-Universität Bochum (RUB) and from the MPI Dortmund have for the first time successfully reproduced the recycling process of proteins regulating cellular transport in a biophysical experiment. In doing so, they traced in detail the way the central switch protein Rab is being extracted from the lipid membrane.


The Rab protein (grey and magenta) with bound GDP (multi-coloured) sits on a membrane surface. As the infrared ray is reflected from the surface, the processes that take place on the membrane can be studied. The GDI, represented by the hand, seizes the Rab protein and extracts it from the membrane. The timeline of the infrared spectra (top centre) is resolved in the spectrometer (top right).

Credit: Konstantin Gavriljuk, RUB

The team of PD Dr Carsten Kötting, Prof Dr Klaus Gerwert (Department of Biophysics, RUB) and Prof Dr Roger S. Goody (Max Planck Institute for Molecular Physiology, Dortmund) has published the spectroscopic and dynamic data in the PNAS journal's Online Early Edition. "Until now, this protein's interactions have only ever been studied in a solution – i.e. without a lipid membrane. The step into the protein's natural environment opens up entirely new possibilities," says Carsten Kötting. This is because many disease-relevant protein interactions within a cell take place on a membrane.

From solution to membrane

Unlike Ras proteins that regulate cell growth, Rab GTPases control the traffic between different cell sections. Just like Ras proteins, Rab GTPases (also called Rab proteins) act as switches. Turned "on", the high-energy GTP molecule is bound; turned "off", the lower-energy GDP molecule is bound. The switch protein Rab does not simply swim through the cell with the trafficked load it is carrying; rather, it is fixed within the membrane by means of lipid anchors. After the trafficking stage has been successfully completed, Rab is extracted from the membrane and recycled. This process has never yet been simulated in a biophysical experiment. The Bochum-Dortmund team has succeeded in manufacturing the Rab protein with the membrane anchor in its active form in large quantities, to bind it to an artificial lipid membrane and to investigate the process of extracting the switch protein from the membrane in a spectrometer.
Seize and pull hard

For this purpose, biophysicists used the method of ATR infrared spectroscopy, which enabled them to visualise processes on surfaces such as lipid membranes. They paid particular attention to the GDI protein that binds the Rab protein and its lipid anchor. The question was whether Rab dissociates spontaneously from the membrane and is seized by GDI or whether GDI plays an active part in the Rab recycling process. With ATR spectroscopy, the team was for the first time able to differentiate between these two processes and demonstrate the GDI protein's active role. "We observed that GDI approaches the membrane and seizes the Rab protein then and there," explains Konstantin Gavriljuk. "Thus, Rab is extracted from the membrane by GDI much more quickly than it would have otherwise dissociated."
Legionella affect cellular trafficking processes

Rab GTPases and their interaction partners have an impact on certain diseases, for example some forms of mental disabilities and legionnaire's disease. The agents causing legionnaire's disease, namely legionella, attack Rab proteins and modify them chemically, thus affecting cellular trafficking processes; they are thus able to reproduce in human cells. The experiments have shown that the chemical modification caused by legionella inhibits the process of Rab extraction from the membrane by GDI. "We have now gained a better understanding of where legionella attack cells and of the consequences thereof," says Carsten Kötting.

Project funding

The project funds are supplied by SFB 642 "GTP and ATP-dependent Membrane Processes", whose spokesperson is Prof Gerwert.

Bibliographic record

K. Gavriljuk, A. Itzen, R.S. Goody, K. Gerwert, C. Kötting (2013): Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy, PNAS, doi:10.1073/pnas.1307655110
Further information

Prof Dr Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail: klaus.gerwert@bph.rub.de

PD Dr Carsten Kötting, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-24461, e-mail: Koetting@bph.rub.de

A click away

Previous information re.: Rab
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00416.html.en
Editor: Dr. Julia Weiler

Dr. Carsten Kötting | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>