Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins in Histone Group Might Influence Cancer Development, Study Shows

04.09.2013
- Histone proteins play a crucial role in DNA packaging.

- It has been thought that proteins called “replication-dependent histone isoforms” all behaved the same way.

- This study shows that proteins in the group vary in expression, and that their dysregulation might influence cancer development.
Spool-like proteins called histones play a crucial role in packaging the nearly seven feet of DNA found in most human cells. A new study shows that a group of histones that are thought to behave the same actually are functionally distinct proteins.

The findings by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) indicate that replication-dependent histone isoforms can have distinct cellular functions, and that changes in expression of the various isoforms might play a role in cancer development.

The study is published in the journal Nucleic Acids Research as a Breakthrough Article, placing it among the top 2-3 percent of papers presented by the journal in terms of significance and excellence.

“Replication-dependent histone isoforms have always been thought to be functionally identical, but we show that they have distinct functions, and that altering the levels of these isoforms can influence cell proliferation and tumor development,” says principal investigator Mark Parthun, PhD, professor of Molecular and Cellular Biochemistry and a member of the OSUCCC – James Experimental Therapeutics Program.

“These highly novel results provide a new mechanism for the regulation of chromatin structure, Parthun says.”

Replication-dependent histones are highly expressed just before the onset of DNA replication during the cell cycle, and they are repressed when DNA replication is completed.

The genes that encode these histones are located in large clusters that can contain dozens of histone genes. “This localization in gene clusters led to the belief that these histones are regulated as a group, and that the multiple genes encoding each histone are functionally equivalent,” Parthun says.

However, the proteins encoded by replication-dependent histone genes are not identical. For example, 16 genes encode the replication-dependent histone called H2A. Strikingly, these genes encode 11 distinct protein variations.

Parthun and his colleagues conducted the study using three bladder-cancer cell lines. Key findings include:

The abundance of replication-dependent histone H2A isoforms showed dramatic differences in bladder cancer cells vs. normal bladder cells;

Replication-dependent H2A isoforms were expressed at different levels in cancer cells; expression of one isoform was 10-fold higher than the others;

Knocking down the messenger RNA of a specific replication-dependent H2A isoform increased cell proliferation and tumorigenicity.

Replication-dependent H2A isoforms show evidence of individualized regulation.

Funding from the NIH/National Cancer Institute (grant CA101956, CA107106) and the Leukemia and Lymphoma Society supported this research.

Other researchers involved in this study were Rajbir Singh, Amir Mortazavi, Kelly H. Telu, Prabakaran Nagarajan, David M. Lucas, Jennifer M. Thomas-Ahner, Steven K. Clinton, John C. Byrd and Michael A. Freitas, The Ohio State University.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations, 614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>