Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Hey1 and Hey2 Ensure that Inner Ear 'Hair Cells' Are Made at the Right Time and in the Right Place

17.09.2014

Two Johns Hopkins neuroscientists have discovered the “molecular brakes” that time the generation of important cells in the inner ear cochleas of mice. These “hair cells” translate sound waves into electrical signals that are carried to the brain and are interpreted as sounds. If the arrangement of the cells is disordered, hearing is impaired. A summary of the research will be published in The Journal of Neuroscience on Sept. 16.

“The proteins Hey1 and Hey2 act as brakes to prevent hair cell generation until the time is right,” says Angelika Doetzlhofer, Ph.D., an assistant professor of neuroscience. “Without them, the hair cells end up disorganized and dysfunctional.”


Angelika Doetzlhofer

The hair cells of mice missing just Hey2 are neatly lined up in four rows (left) while those missing Hey1 and Hey2 are disorganized (right). The cells' hairlike protrusions (pink) can be misoriented, too.

The cochlea is a coiled, fluid-filled structure bordered by a flexible membrane that vibrates when sound waves hit it. This vibration is passed through the fluid in the cochlea and sensed by specialized hair cells that line the tissue in four precise rows. Their name comes from the cells’ hairlike protrusions that detect movement of the cochlear fluid and create electrical signals that relay the sound to the brain.

During development, “parent cells” within the cochlea gradually differentiate into hair cells in a precise sequence, starting with the cells at the base of the cochlea and progressing toward its tip. The signaling protein Sonic Hedgehog was known to be released by nearby nerve cells in a time- and space-dependent pattern that matches that of hair cell differentiation. But the mechanism of Sonic Hedgehog’s action was unclear.

Doetzlhofer and postdoctoral fellow Ana Benito Gonzalez bred mice whose inner ear cells were missing Hey1 and Hey2, two genes known to be active in the parent cells but turned off in hair cells. They found that, without those genes, the cells were generated too early and were abnormally patterned: Rows of hair cells were either too many or too few, and their hairlike protrusions were often deformed and pointing in the wrong direction.

“While these mice didn’t live long enough for us to test their hearing, we know from other studies that mice with disorganized hair cell patterns have serious hearing problems,” says Doetzlhofer.

Further experiments demonstrated the role of Sonic Hedgehog in regulating the two key genes.

“Hey1 and Hey2 stop the parent cells from turning into hair cells until the time is right,” explains Doetzlhofer. “Sonic Hedgehog applies those ‘brakes,’ then slowly releases pressure on them as the cochlea develops. If the brakes stop working, the hair cells are generated too early and end up misaligned.”

She adds that Sonic Hedgehog, Hey1 and Hey2 are found in many other parent cell types throughout the developing nervous system and may play similar roles in timing the generation of other cell types.

This work was supported by grants from the Whitehall Foundation (2010-05-81) and the National Institute on Deafness and other Communication Disorders (F32DC013477, DC005211).

On the Web:

View the article at The Journal of Neuroscience (after the embargo lifts). http://dx.doi.org/10.1523/JNEUROSCI.1494-14.2014

Learn more about Angelika Doetzlhofer.
www.hopkinsmedicine.org/profiles/results/directory/profile/6477655/angelika-doetzlhofer

Catherine Kolf | newswise

Further reports about: Cells Communication Disorders Medicine brakes cell types genes hair cells hearing sound waves

More articles from Life Sciences:

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>