Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Hey1 and Hey2 Ensure that Inner Ear 'Hair Cells' Are Made at the Right Time and in the Right Place

17.09.2014

Two Johns Hopkins neuroscientists have discovered the “molecular brakes” that time the generation of important cells in the inner ear cochleas of mice. These “hair cells” translate sound waves into electrical signals that are carried to the brain and are interpreted as sounds. If the arrangement of the cells is disordered, hearing is impaired. A summary of the research will be published in The Journal of Neuroscience on Sept. 16.

“The proteins Hey1 and Hey2 act as brakes to prevent hair cell generation until the time is right,” says Angelika Doetzlhofer, Ph.D., an assistant professor of neuroscience. “Without them, the hair cells end up disorganized and dysfunctional.”


Angelika Doetzlhofer

The hair cells of mice missing just Hey2 are neatly lined up in four rows (left) while those missing Hey1 and Hey2 are disorganized (right). The cells' hairlike protrusions (pink) can be misoriented, too.

The cochlea is a coiled, fluid-filled structure bordered by a flexible membrane that vibrates when sound waves hit it. This vibration is passed through the fluid in the cochlea and sensed by specialized hair cells that line the tissue in four precise rows. Their name comes from the cells’ hairlike protrusions that detect movement of the cochlear fluid and create electrical signals that relay the sound to the brain.

During development, “parent cells” within the cochlea gradually differentiate into hair cells in a precise sequence, starting with the cells at the base of the cochlea and progressing toward its tip. The signaling protein Sonic Hedgehog was known to be released by nearby nerve cells in a time- and space-dependent pattern that matches that of hair cell differentiation. But the mechanism of Sonic Hedgehog’s action was unclear.

Doetzlhofer and postdoctoral fellow Ana Benito Gonzalez bred mice whose inner ear cells were missing Hey1 and Hey2, two genes known to be active in the parent cells but turned off in hair cells. They found that, without those genes, the cells were generated too early and were abnormally patterned: Rows of hair cells were either too many or too few, and their hairlike protrusions were often deformed and pointing in the wrong direction.

“While these mice didn’t live long enough for us to test their hearing, we know from other studies that mice with disorganized hair cell patterns have serious hearing problems,” says Doetzlhofer.

Further experiments demonstrated the role of Sonic Hedgehog in regulating the two key genes.

“Hey1 and Hey2 stop the parent cells from turning into hair cells until the time is right,” explains Doetzlhofer. “Sonic Hedgehog applies those ‘brakes,’ then slowly releases pressure on them as the cochlea develops. If the brakes stop working, the hair cells are generated too early and end up misaligned.”

She adds that Sonic Hedgehog, Hey1 and Hey2 are found in many other parent cell types throughout the developing nervous system and may play similar roles in timing the generation of other cell types.

This work was supported by grants from the Whitehall Foundation (2010-05-81) and the National Institute on Deafness and other Communication Disorders (F32DC013477, DC005211).

On the Web:

View the article at The Journal of Neuroscience (after the embargo lifts). http://dx.doi.org/10.1523/JNEUROSCI.1494-14.2014

Learn more about Angelika Doetzlhofer.
www.hopkinsmedicine.org/profiles/results/directory/profile/6477655/angelika-doetzlhofer

Catherine Kolf | newswise

Further reports about: Cells Communication Disorders Medicine brakes cell types genes hair cells hearing sound waves

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>