Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins in gel

26.06.2009
Several thousand test fields are tightly packed together on the tiny surface of a biochip. They permit the rapid analysis of substances, e.g. for diagnosing allergens in the blood.

These biochips are already in widespread use for DNA testing. When it comes to proteins, such chips are difficult to produce. This is because the proteins have a defined three-dimensional structure by which they can interact specifically with other molecules and control biological processes. If they bind to a surface, such as on a biochip, the structure can be destroyed and the protein cannot perform its function.

Research scientists at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm have solved this problem. "We have developed a gel – a network of organic molecules – that we can apply to the surface of the biochip," says Dr. Andreas Holländer, group manager at the IAP. "This gel layer is only about 100 to 500 nano-meters thick and consists mainly of water. We thus make the protein believe that it is in a solution, even though it is chemically connected to the network. It feels as if it is in its natural environment and continues to function even though it is on a biochip."

Other research groups are working on similar hydrogels. The key feature of the new production technique is that it can be applied in industry, and the gel layers can be manufactured cheaply on a large scale. Usually there are two ways of producing such networks. In the first, complete polymers are chemically bound to the surface. In the second, the polymer molecules are constructed unit by unit on the surface. "Our technique is a mixture of the two known methods. We use larger molecular building blocks to build up the network on the surface," explains Falko Pippig, who is doing his doctorate on this subject at the IAP.

As the hydrogel layers are very thin, substances added from the outside very quickly reach the protein which is in and on this layer. For example, physicians can put blood or urine on the chip and diagnose illnesses. The research scientists have already developed the process fundamentals. Protein biochips could therefore become everyday items of equipment in medical laboratories – the possible applications far exceed those of DNA chips.

Dr. Andreas Hollaender | EurekAlert!
Further information:
http://www.iap.fraunhofer.de

Further reports about: DNA IAP Protein biological process organic molecule

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>