Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The proteins ensuring genome protection

13.02.2012
Researchers from the University of Geneva, Switzerland, discover how enzymatic onslaughts at the ends of our chromosomes are countered

Researchers from the University of Geneva (UNIGE), Switzerland, have discovered the crucial role of two proteins in developing a cell 'anti-enzyme shield'. This protection system, which operates at the level of molecular 'caps' named telomeres, prevents cells from treating chromosome ends like accidental DNA breaks and 'repairing' them.

Joining chromosome ends would, indeed, lead to tumor formation. This study, carried out by Cyril Ribeyre and led by David Shore, professor of molecular biology, is published in the revue Nature Structural & Molecular Biology.

Each of our cells contains two huge DNA strands, segmented into parts that are packaged within chromosomes. Each chromosome end, however, becomes vulnerable to specific enzymes that target accidental DNA breaks in need of repair. The cell is, indeed, equipped with a sensitive surveillance system that recognizes and corrects abnormalities occurring within our genome. This system includes patrolling proteins, molecules that set off an alarm, as well as damage-repairing enzymes.

In order to escape the cellular mechanisms that detect and repair damaged DNA, the ends of our chromosomes are covered by molecular 'caps' called telomeres. These complexes, formed of proteins and repetitive DNA, constitute an 'anti-enzyme shield' that protects chromosome ends. Inadvertent end joining would indeed lead to chromosome breakage and rearrangement during cell division, processes that are known to drive tumor formation.

Restraining the zeal of repair enzymes

Cyril Ribeyre and David Shore, from the Department of Molecular biology of the UNIGE, have discovered that Rif1 and Rif2, two related proteins that bind telomeres, deactivate the alarm of the DNA repair surveillance system. 'Telomeres interact with many molecules. We had identified several biochemical players, but we didn't know how they functioned', says Professor Shore, member of the National Center of Competence in Research Frontiers in Genetics. 'We have now established that Rif1 and Rif2 prevent the binding of specific proteins involved in setting off this alarm, which inhibits an enzymatic cascade at an early stage in the process'.

This local 'anti-enzyme shield' seems to extend to neighboring regions. 'Telomeres of adjacent chromosomes probably benefit from this protective system, in case they undergo severe damage', suggests Professor Shore.

These two related molecules had already been analyzed and part of their functions uncovered by the researcher's team. 'We knew that Rif1 and Rif2 were involved in regulating telomere length, which determines the life span of the cell. Both of them were also suspected to take part in the telomeric cap formation', details Cyril Ribeyre.

The multiple activities of Rif1 and Rif2 thus contribute to ensure the optimal functioning of telomeres with respect to their roles –all essential- within the cell.

David Shore | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>