Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The proteins ensuring genome protection

13.02.2012
Researchers from the University of Geneva, Switzerland, discover how enzymatic onslaughts at the ends of our chromosomes are countered

Researchers from the University of Geneva (UNIGE), Switzerland, have discovered the crucial role of two proteins in developing a cell 'anti-enzyme shield'. This protection system, which operates at the level of molecular 'caps' named telomeres, prevents cells from treating chromosome ends like accidental DNA breaks and 'repairing' them.

Joining chromosome ends would, indeed, lead to tumor formation. This study, carried out by Cyril Ribeyre and led by David Shore, professor of molecular biology, is published in the revue Nature Structural & Molecular Biology.

Each of our cells contains two huge DNA strands, segmented into parts that are packaged within chromosomes. Each chromosome end, however, becomes vulnerable to specific enzymes that target accidental DNA breaks in need of repair. The cell is, indeed, equipped with a sensitive surveillance system that recognizes and corrects abnormalities occurring within our genome. This system includes patrolling proteins, molecules that set off an alarm, as well as damage-repairing enzymes.

In order to escape the cellular mechanisms that detect and repair damaged DNA, the ends of our chromosomes are covered by molecular 'caps' called telomeres. These complexes, formed of proteins and repetitive DNA, constitute an 'anti-enzyme shield' that protects chromosome ends. Inadvertent end joining would indeed lead to chromosome breakage and rearrangement during cell division, processes that are known to drive tumor formation.

Restraining the zeal of repair enzymes

Cyril Ribeyre and David Shore, from the Department of Molecular biology of the UNIGE, have discovered that Rif1 and Rif2, two related proteins that bind telomeres, deactivate the alarm of the DNA repair surveillance system. 'Telomeres interact with many molecules. We had identified several biochemical players, but we didn't know how they functioned', says Professor Shore, member of the National Center of Competence in Research Frontiers in Genetics. 'We have now established that Rif1 and Rif2 prevent the binding of specific proteins involved in setting off this alarm, which inhibits an enzymatic cascade at an early stage in the process'.

This local 'anti-enzyme shield' seems to extend to neighboring regions. 'Telomeres of adjacent chromosomes probably benefit from this protective system, in case they undergo severe damage', suggests Professor Shore.

These two related molecules had already been analyzed and part of their functions uncovered by the researcher's team. 'We knew that Rif1 and Rif2 were involved in regulating telomere length, which determines the life span of the cell. Both of them were also suspected to take part in the telomeric cap formation', details Cyril Ribeyre.

The multiple activities of Rif1 and Rif2 thus contribute to ensure the optimal functioning of telomeres with respect to their roles –all essential- within the cell.

David Shore | EurekAlert!
Further information:
http://www.unige.ch

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>