Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins in DNA damage response network targeted for new therapies, Moffitt researchers say

16.10.2012
Moffitt Cancer Center Researchers Find DNA Damage Response Network Integrates with Other Cell Activities, Opens Door to New Cancer Therapies
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida; Duke University; Johns Hopkins University; the Brazilian National Cancer Institute; and the Rio de Janeiro Federal Institute of Education, Science and Technology have discovered that an intricate system to repair DNA damage called the “DNA damage response” (DDR) contains previously unknown components, including proteins that could be targeted as sensitizers for chemotherapy. Some of these targets may already have drugs available that have unrecognized uses in cancer therapy, said the researchers.

The study appears in the Sept. 18 issue of Science Signaling.

“A domain called BRCT is frequently present in proteins involved in the DDR network,” said study lead author Alvaro N.A. Monteiro, Ph.D., senior member of Moffitt’s Cancer Epidemiology Program. “We undertook a systematic analysis of the BRCT domain, a protein module that plays a critical role in the DDR, and found a large network of interacting proteins centered on BRCT-containing proteins. In doing so, we discovered new potential players in the DDR. These new players may constitute potential biomarkers for drug response or targets for treatment.”

According to the authors, their data could be used to build a more comprehensive map of the components and interactions involved in the DDR, a system through which proteins detect DNA damage, promote repair and coordinate the cell cycle.

Because defects in the DDR can lead to cancer, the properly functioning network is considered to be a barrier against tumor growth. Chemotherapy regimens exploit weaknesses in the system to kill cancer cells. The new discoveries augment knowledge about the DDR by adding information on the function of specific proteins involved with BRCT-containing proteins.

“Our expectation is that the establishment of the BRCT-network will help identify potential sensitizers of therapy and accelerate the development of new therapeutic strategies,” Monteiro said.

The research was supported in part by the U.S. Army Medical Research and Materiel Command, National Functional Genomics Center (W81XWH-08-2-0101), the Florida Breast Cancer Foundation, and the National Cancer Institute, part of the National Institutes of Health (P50-CA119997).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

Further reports about: BRCT BRCT-containing Cancer DNA DNA damage Moffitt Cancer Center Protein proteins specific protein

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>