Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins in DNA damage response network targeted for new therapies, Moffitt researchers say

16.10.2012
Moffitt Cancer Center Researchers Find DNA Damage Response Network Integrates with Other Cell Activities, Opens Door to New Cancer Therapies
Researchers at Moffitt Cancer Center and colleagues at the University of South Florida; Duke University; Johns Hopkins University; the Brazilian National Cancer Institute; and the Rio de Janeiro Federal Institute of Education, Science and Technology have discovered that an intricate system to repair DNA damage called the “DNA damage response” (DDR) contains previously unknown components, including proteins that could be targeted as sensitizers for chemotherapy. Some of these targets may already have drugs available that have unrecognized uses in cancer therapy, said the researchers.

The study appears in the Sept. 18 issue of Science Signaling.

“A domain called BRCT is frequently present in proteins involved in the DDR network,” said study lead author Alvaro N.A. Monteiro, Ph.D., senior member of Moffitt’s Cancer Epidemiology Program. “We undertook a systematic analysis of the BRCT domain, a protein module that plays a critical role in the DDR, and found a large network of interacting proteins centered on BRCT-containing proteins. In doing so, we discovered new potential players in the DDR. These new players may constitute potential biomarkers for drug response or targets for treatment.”

According to the authors, their data could be used to build a more comprehensive map of the components and interactions involved in the DDR, a system through which proteins detect DNA damage, promote repair and coordinate the cell cycle.

Because defects in the DDR can lead to cancer, the properly functioning network is considered to be a barrier against tumor growth. Chemotherapy regimens exploit weaknesses in the system to kill cancer cells. The new discoveries augment knowledge about the DDR by adding information on the function of specific proteins involved with BRCT-containing proteins.

“Our expectation is that the establishment of the BRCT-network will help identify potential sensitizers of therapy and accelerate the development of new therapeutic strategies,” Monteiro said.

The research was supported in part by the U.S. Army Medical Research and Materiel Command, National Functional Genomics Center (W81XWH-08-2-0101), the Florida Breast Cancer Foundation, and the National Cancer Institute, part of the National Institutes of Health (P50-CA119997).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

Further reports about: BRCT BRCT-containing Cancer DNA DNA damage Moffitt Cancer Center Protein proteins specific protein

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>