Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins critical to wound healing identified

19.08.2014

Mice missing two important proteins of the vascular system develop normally and appear healthy in adulthood, as long as they don’t become injured. If they do, their wounds don’t heal properly, a new study shows.

The research, at Washington University School of Medicine in St. Louis, may have implications for treating diseases involving abnormal blood vessel growth, such as the impaired wound healing often seen in diabetes and the loss of vision caused by macular degeneration.


Rei Nakamura, PhD

Pictured are normal blood vessels of a mouse’s retina.


Rei Nakamura, PhD

The mouse retina responds to injury by growing new, leaky blood vessels. This abnormal response obscures vision. The new study suggests inhibiting FGF signaling in the eye may help prevent this process.

The study appears Aug. 18 in the Proceedings of the National Academy of Sciences (PNAS) online early edition.

The paper’s senior author, David M. Ornitz, MD, PhD, the Alumni Endowed Professor of Developmental Biology, studies a group of proteins known as fibroblast growth factors, or the FGF family of proteins. FGF proteins are signaling molecules that play broad roles in embryonic development, tissue maintenance, and wound healing. They interact with specific receptor molecules, FGFRs, located on the surface of many types of cells in the body.

... more about:
»Blindness »FGF »Medicine »NIH »healing »healthy »injury »proteins »wound

When an organ is injured, the healing process involves the growth of new blood vessels. Since the cells lining the interior of blood vessels and blood cells themselves are important for developing new vasculature, Ornitz and his colleagues asked what would happen if they turned off signaling of the FGFR1 and FGFR2 proteins, two major mediators of the FGF signal that are present in the cells that line blood vessels. Their strategy differed from past studies, which shut down this signaling more broadly.

“The first thing we noticed — and we were rather surprised by this — was that the mice were completely normal,” Ornitz said. “They were running around and lived to a ripe old age. We did genetic tests to make sure they actually lacked these proteins. But when we challenged these mice, we saw that they healed from a skin injury more slowly than their normal littermates, and we found that the density of blood vessels surrounding the injury site was significantly decreased.”

With collaborator and co-senior author Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences, the investigators also looked at the eyes. Like any other organ, new blood vessels grow in the eye in response to disease or injury. But unlike the rest of the body, new blood vessels are not desired here, since they bleed, cause scar tissue formation and block light to the retina, causing vision loss.

The new work suggests that increasing FGF signaling in the body might help improve wound healing by increasing new blood vessel growth following an injury. Especially in those who have trouble healing, such as patients with diabetes-related foot ulcers. Ornitz pointed out that human FGF2 is already in clinical use as a topical spray in Japan for foot ulcers and similar wound healing purposes.

Conversely, inhibiting these pathways in the eye might help patients with age-related macular degeneration or diabetic retinopathy. Such patients grow new blood vessels in response to these diseased or injured states, but the new vessels only serve to obscure vision, not help heal an abnormal eye. 

And since the research suggests these FGF pathways are not involved with normal development and tissue maintenance, any treatments boosting or inhibiting these signals would likely not effect healthy tissue.

“That’s an important point,” said Apte, who treats patients at Barnes-Jewish Hospital. “In diabetes, the normal blood vessels of the retina become fragile because the disease affects them. With any targeted therapy, we worry about damaging the normal vessels. But our work suggests that inhibiting FGF signaling in the eye may prevent this abnormal response without harming normal vessels.”

This work was supported by National Institutes of Health (NIH) grants HL105732, T32-HL07275, HL63736, HL55337, and EY019287, as well as NIH Vision Core Grant P30EY02687 and a Carl Marshall Reeves and Mildred Almen Reeves Foundation Inc. Award. This work also was supported by a Research to Prevent Blindness Inc. Career Development Award, the International Retina Research Foundation, American Health Assistance Foundation, Thome Foundation, a Lacy Foundation Research Award, a Knights Templar Eye Foundation Grant, and a Research to Prevent Blindness Inc. unrestricted grant. Transgenic mouse production was made possible through the Washington University Musculoskeletal Research Center (NIH grant P30 AR057235) and the Digestive Disease Research Core Center (NIH grant P30 DK052574).

Oladipupo S, Smith C, Santeford A, Park C, Sene A, Wiley LA, Osei-Owusu P, Hsu J, Zapata N, Liu F, Nakamura R, Lavine KJ, Blumer KJ, Choi K, Apte RS, Ornitz DM. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. PNAS Early Edition. Aug. 18, 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Eurek Alert!
Further information:
https://news.wustl.edu/news/Pages/27248.aspx

Further reports about: Blindness FGF Medicine NIH healing healthy injury proteins wound

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>