Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins critical to wound healing identified


Mice missing two important proteins of the vascular system develop normally and appear healthy in adulthood, as long as they don’t become injured. If they do, their wounds don’t heal properly, a new study shows.

The research, at Washington University School of Medicine in St. Louis, may have implications for treating diseases involving abnormal blood vessel growth, such as the impaired wound healing often seen in diabetes and the loss of vision caused by macular degeneration.

Rei Nakamura, PhD

Pictured are normal blood vessels of a mouse’s retina.

Rei Nakamura, PhD

The mouse retina responds to injury by growing new, leaky blood vessels. This abnormal response obscures vision. The new study suggests inhibiting FGF signaling in the eye may help prevent this process.

The study appears Aug. 18 in the Proceedings of the National Academy of Sciences (PNAS) online early edition.

The paper’s senior author, David M. Ornitz, MD, PhD, the Alumni Endowed Professor of Developmental Biology, studies a group of proteins known as fibroblast growth factors, or the FGF family of proteins. FGF proteins are signaling molecules that play broad roles in embryonic development, tissue maintenance, and wound healing. They interact with specific receptor molecules, FGFRs, located on the surface of many types of cells in the body.

... more about:
»Blindness »FGF »Medicine »NIH »healing »healthy »injury »proteins »wound

When an organ is injured, the healing process involves the growth of new blood vessels. Since the cells lining the interior of blood vessels and blood cells themselves are important for developing new vasculature, Ornitz and his colleagues asked what would happen if they turned off signaling of the FGFR1 and FGFR2 proteins, two major mediators of the FGF signal that are present in the cells that line blood vessels. Their strategy differed from past studies, which shut down this signaling more broadly.

“The first thing we noticed — and we were rather surprised by this — was that the mice were completely normal,” Ornitz said. “They were running around and lived to a ripe old age. We did genetic tests to make sure they actually lacked these proteins. But when we challenged these mice, we saw that they healed from a skin injury more slowly than their normal littermates, and we found that the density of blood vessels surrounding the injury site was significantly decreased.”

With collaborator and co-senior author Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences, the investigators also looked at the eyes. Like any other organ, new blood vessels grow in the eye in response to disease or injury. But unlike the rest of the body, new blood vessels are not desired here, since they bleed, cause scar tissue formation and block light to the retina, causing vision loss.

The new work suggests that increasing FGF signaling in the body might help improve wound healing by increasing new blood vessel growth following an injury. Especially in those who have trouble healing, such as patients with diabetes-related foot ulcers. Ornitz pointed out that human FGF2 is already in clinical use as a topical spray in Japan for foot ulcers and similar wound healing purposes.

Conversely, inhibiting these pathways in the eye might help patients with age-related macular degeneration or diabetic retinopathy. Such patients grow new blood vessels in response to these diseased or injured states, but the new vessels only serve to obscure vision, not help heal an abnormal eye. 

And since the research suggests these FGF pathways are not involved with normal development and tissue maintenance, any treatments boosting or inhibiting these signals would likely not effect healthy tissue.

“That’s an important point,” said Apte, who treats patients at Barnes-Jewish Hospital. “In diabetes, the normal blood vessels of the retina become fragile because the disease affects them. With any targeted therapy, we worry about damaging the normal vessels. But our work suggests that inhibiting FGF signaling in the eye may prevent this abnormal response without harming normal vessels.”

This work was supported by National Institutes of Health (NIH) grants HL105732, T32-HL07275, HL63736, HL55337, and EY019287, as well as NIH Vision Core Grant P30EY02687 and a Carl Marshall Reeves and Mildred Almen Reeves Foundation Inc. Award. This work also was supported by a Research to Prevent Blindness Inc. Career Development Award, the International Retina Research Foundation, American Health Assistance Foundation, Thome Foundation, a Lacy Foundation Research Award, a Knights Templar Eye Foundation Grant, and a Research to Prevent Blindness Inc. unrestricted grant. Transgenic mouse production was made possible through the Washington University Musculoskeletal Research Center (NIH grant P30 AR057235) and the Digestive Disease Research Core Center (NIH grant P30 DK052574).

Oladipupo S, Smith C, Santeford A, Park C, Sene A, Wiley LA, Osei-Owusu P, Hsu J, Zapata N, Liu F, Nakamura R, Lavine KJ, Blumer KJ, Choi K, Apte RS, Ornitz DM. Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. PNAS Early Edition. Aug. 18, 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Eurek Alert!
Further information:

Further reports about: Blindness FGF Medicine NIH healing healthy injury proteins wound

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>