Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that triggers plant cell division revealed by researchers

15.06.2009
From the valves in a human heart to the quills on a porcupine to the petals on a summer lily, the living world is as varied as it is vast. For this to be possible, the cells that make up these living things must be just as varied.

Parent cells must be able to divide in ways that create daughter cells that are different from each other, a process called asymmetric division. Scientists know how this happens in animals, but the process in plants has been a mystery.

Now Stanford biologists have found a plant protein that appears to play a key role in this type of cell division. The presence of the protein, called BASL, is vital to asymmetric cell division. In plant cells where it was absent, the cells did not divide.

"This is crucial information if we really want to understand plants' unique ways of making the different types of cells in their bodies," said Dominique Bergmann, an assistant professor of biology.

Bergmann, along with Juan Dong, a postdoctoral researcher, and Cora MacAlister, a doctoral candidate, both in the Biology Department, tracked BASL in epidermal cells of Arabidopsis, a small plant used for genetic studies. The epidermis of Arabidopsis contains small pores called stomata that allow the plant to breathe and these stomata are generated by asymmetric cell divisions. The three researchers have written a paper describing their work that will be published online June 11th in the journal Cell.

"For asymmetric cell division in animals, we know many of the proteins that control the process, but plants just don't make any of those proteins," Bergmann said.

By following where in the cell BASL resides during successful asymmetric cell divisions, they have discovered that BASL behaves like many of the proteins vital for animal asymmetric cell divisions, even though BASL's structure doesn't look like any of them.

Bergmann, Dong, and MacAlister tracked BASL by adding a fluorescent tag that could be monitored under the microscope. This way, they could watch BASL as cells divided. They found that BASL behaved in some ways like proteins involved in asymmetric animal cell division--that is, they observed BASL in both the nucleus and in a small region out near the periphery in cells that were about to divide asymmetrically. After the division, only one cell inherited BASL at the cell periphery and this helped the two daughter cells become different.

What's more, it wasn't just the stomatal cells that could do this. When the instructions to make BASL were artificially put into any other cell in the plant, those cells (which normally wouldn't be able to make BASL) not only made BASL, but the protein was found in both the nucleus and a small region at the periphery. This proved that "all plant cells have within them the ability to put proteins in specialized areas," said Bergmann. This is something scientists assumed must be true because it was a necessary step for asymmetric cell division, but until now no one had been able to see it.

So why would nature invent a different protein to solve the same problem? Bergmann explained that it was not surprising to find that plants used a unique protein for their divisions because of the way their cells are built.

"The animal cell is sort of squishy and doesn't have a wall around it--it just has a membrane," said Bergmann, who pointed out that the process of plant cell division is structurally different from animal cell division. "It's like you've taken a string around the center of an animal cell and you've pinched it down ... and that works because it's flexible." Plant cells, on the other hand, have stiff cell walls and can't divide this way. "A plant cell actually has to build a new wall from the inside out in order to divide" said Bergmann.

Bergmann said that the next steps will be to understand how BASL moves from where it is made to the nucleus or out to the periphery of the cell, and what it actually does in those regions of the cell.

"What we don't know is whether cells make a bunch of BASL protein and ship half of it out the periphery and half to the nucleus and the two pools of protein never mix, or whether any one individual BASL protein molecule could 'shuttle' between being at the nucleus and being at the periphery," said Bergmann.

BASL is a valuable signpost for deciphering the workings of plant cell asymmetry, said Bergmann, adding, "Now that we can actually see a protein moved around to a very specific place in the cell, we've opened up the possibility of finding all the internal machinery that plants cells use to get it there."

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>