Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that repels immune cells protects transplanted pancreatic islets from rejection

18.02.2015

Transplanting islets encapsulated with CXCL12 restores blood sugar control without immunosuppression in animal models of diabetes

An approach developed by Massachusetts General Hospital (MGH) investigators may provide a solution to the limitations that have kept pancreatic islet transplantation from meeting its promise as a cure for type 1 diabetes.

In the March issue of the American Journal of Transplantation, the research team reports that encapsulating insulin-producing islets in gel capsules infused with a protein that repels key immune cells protected islets from attack by the recipient's immune system without the need for immunosuppressive drugs, restoring long-term blood sugar control in mouse models. The technique was effective both for islets from unrelated mice and for islets harvested from pigs.

"Protecting donor islets from the recipient's immune system is the next big hurdle toward making islet transplantation a true cure for type 1 diabetes," says Mark Poznansky, MD, PhD, director of the MGH Vaccine and Immunotherapy Center, who led the study.

"The first was generating enough insulin-producing islets, which has been addressed by several groups using pig islets or - as announced last fall by Doug Melton's team at the Harvard Stem Cell Institute - with islet cells derived from human stem cells. Now our technology provides a way to protect islets or other stem-cell-derived insulin-producing cells from being destroyed as soon as they are implanted into a diabetic individual without the need for high-intensity immunosuppression, which has its own serious side effects."

While transplantation of pancreatic islets has been investigated for several decades as a treatment and potential cure for type 1 diabetes, its success has been limited. Along with the risk of rejection that accompanies all organ transplants - a risk that is even greater for cross-species transplants - donated islets are subject to the same autoimmune damage that produced diabetes in the first place.

The immunosuppressive drugs used to prevent organ rejection significantly increase the risk of infections and some cancers, and they also can contribute directly to damaging the islets. Among the strategies investigated to protect transplanted islets are enclosing them in gel capsules and manipulating the immune environment around the implant. The MGH-developed approach includes aspects of both approaches.

Previous research from the MGH team demonstrated that elevated expression of a chemokine - a protein that induces the movement of other cells - called CXCL12 repels the effector T cells responsible for the rejection of foreign tissue while attracting and retaining regulatory T cells that suppress the immune response. For the current study they investigated how either coating islets with CXCL12 or enclosing them in CXCL12 gel capsules would protect islets transplanted into several different mouse models.

Their experiments revealed that islets from nondiabetic mice, either coated with CXCL12 or encapsulated in a CXCL12-containing gel, survived and restored long-term blood sugar control after transplantation into mice with diabetes that was either genetically determined or experimentally induced. CXCL12-encapsulated islets were even protected against rejection by recipient animals previously exposed to tissue genetically identical to that of the donor, which usually would sensitize the immune system against donor tissue. CXCL12-encapsulated pig islets successfully restored blood sugar control in diabetic mice without being rejected. The ability of CXCL12 - either as a coating or encapsulating gel - to repel effector T cells and attract regulatory T cells was also confirmed.

"While studying this procedure in larger animals is an essential next step, which is currently underway with the support of the Juvenile Diabetes Research Foundation, we expect that this relatively simple procedure could be readily translatable into clinical practice when combined with technologies such as stem-cell-derived islets or other insulin-producing cells and advanced encapsulation devices," says Poznansky, an associate professor of Medicine at Harvard Medical School. "We also hope that CXCL12 will have a role in protecting other transplanted organs, tissues and cells as well as implantable devices, a possibility we are actively investigating."

###

Tao Chen, MD, of the MGH Vaccine and Immunotherapy Center (VIC) is lead author of the American Journal of Transplantation report. Additional co-authors include James Markmann, MD, PhD, and David Sachs, MD, of the MGH Center for Transplantation Sciences. The study was supported by grants from the Juvenile Diabetes Research Foundation and the Friends of VIC. A patent covering the approach described in this paper has been issued to the MGH and exclusively licensed to the biotech startup company VICapsys.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Noah Brown | EurekAlert!

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>